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NAREC REFERENCE #29

PREFACE

The purpose of this document is to describe in detail

the syntax of the U. S. Naval Research Laboratory NAREC

version of the NELIAC language; namely, NELIAC-N. This

version of the NELIAC compiler was written by Charles A.

Tapella of the U. S. Navy Electronics Laboratory, San Diego,

California, and John W. Kallander of NRL, was obtained

through the courtesy of Dr. Maurice H. Halstead, Head,

Computing Center, NEL, and was implemented on the NAREC by

John W. Kallander. NELIAC-N is based on and is very similar

to NELIAC-T-1604.

This document is tutorial in nature and is not intended

to be definitive of NELIAC-N. The report "The NELIAC Com-

piler Language, U. S. Naval Postgraduate School CDC-1604

Version", was written by Richard M. Thatcher, Department of

Operations Research, USNPGS, Monterey, California, and

published by the USNPGS in January 1963. This CDC-1604

Version Report has been rewritten to pertain to NELIAC-N and

expanded by John W. Kallander of the Research Computation

Center, NRL, and the result is this document. An additional

report defining NELIAC-N will be issued at a later date.
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However, this tutorial report should be studied in detail by

any person considering programming in NELIAC-N, and should be

thoroughly understood before using the definitive report which

will follow.

Dr, Halstead's published book Machine-Independent Computer

Programming (Spartan Books, Washington, D.C., 1962) describes

the basic NELIAC language, provides guidance in developing

compiler programs and contains much interesting background re-

garding NELIAC that could not be included in this description

of the NELIAC language as implemented on a particular computer.

It is desirable, although not necessary, that the user of this

document read through the first three chapters of Dr. Halstead's

book before, or concurrently with, studying this more detailed

work.

Credit is due Sidney W. and Catherine B. Porter, Comput-

ing Center, NEL, for writing NELIAC 1604-N, the intermediate

compiler used to debug NELIAC-N to the point of self-compila-

tion; to Maurice Brinkman, RCC, NRL, for his considerable and

prolonged aid while debugging the compiler and training NRL's

programmers and scientists in the use of NELIAC-N; and to

Mrs. Elizabeth Wald, also of the RCC, for writing the NELIAC-N

Library of Functions.

ii
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Much credit also must be extended to Mrs. Rose Skinner,

Branch Secretary, RCC, for typing and correcting the compiler

flowcharts through all of its numerous recompilations, for

typing the extensive group of test programs necessary to

raising the NELIAC-N compiler to its present level of develop-

ment, and for typing this entire manuscript.

Richard M. Thatcher

Dept. of Operations Research

U. S. Naval Postgraduate School

John W. Kallander

Research Computation Center

U. S. Naval Research Laboratory

April 1963
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ABSTRACT

This report contains a tutorial descrip-
tion of NELIAC-N. the version of the NELIAC
language implemented on the NAREC by means of
the NELIAC-N compiler. NELIAC is a problem-
oriented, machine-independent programming lang-
uage which enables programmers, scientists, and
engineers to write their programs in a mathemat-
ical language rather than requiring an actual
machine language or an assembly language. NELIAC
thus minimizes the knowledge of the actual com-
puter required by the programmer, maximizes the
readability of the programs themselves, and pro-
vides carry-over value of programs from one com-
puter to another.

PROBLEM STATUS

This is an interim report; work on this
problem is continuing.

AUTHOR IZAT ION

NRL Problem B02-03B
Project RR 003-09-41-5101

Manuscript submitted May 31, 1963.

viii



NAREC REFERENCE r29

NELIAC-N, A TUTORIAL REPORT

I. INTRODUCTION

A NELIAC program is a means of expressing a

computer problem in terms much closer to an algebraic

language than the detailed step-by-step instructions

of actual machine language. A program written in the

NELIAC language is comprised of statements and proper

punctuation. This language is interpreted and trans-

lated by the NELIAC compiler which generates the actual

machine instructions or object program understood by a

computer. One must, therefore, adhere strictly to the

rules of the language as each statement, setoff by

proper punctuation, has definite significance to the

compiler.

NR•;, p..
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CHARACTERS OF THE NELIAC LANGUAGE

The NELIAC vocabulary is constructed from the following

symbols:

THE NELIAC CHARACTER SET

1 234567 890

abcdefgh ijklmnopqrs tuvwxyz

ABC DE FGH I JKLMNOPQ RSTUVWXY Z

()[] i i

Although the uses of the characters are described in detail

later in this document, it might be well to note here the

names of the last 26 of them:

Comma

; Semicolon

Colon

Period

() Left and right parentheses

[] Left and right brackets

NR#29, p.2
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U[ Left and right braces

+ Plus

- Minus

* Multiply

/ Divide

t Exponent sign, or Up arrow

-*Arrow, or Right arrow

I Absolute sign

= Equal

$ Not equal

< Less than

> Greater than

SLess than or equal to

SGreater than or equal to

U Or

n And

# Hexi sign

Statements, each denoting a specific action, are built from

this character set into a NELIAC program.

GENERAL PROGRAMMING RULES

All computer programs require part of the computer

memory for storage of numerical values pertinent to the

NR#29, p.3
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pioblem. These memory locations are used by the program in

the sense that the program obtains values from them in order

to perform indicated operations on them. These memory loca-

tions are set by the program in the sense that the program

stores intermediate and final results of computation into

them. Thus, any program can be broken into two parts: the

storage part and the operating, or program logic, part.

When a programmer writes a program in compiler language

he must tell the compiler what the storage requirements will

be. The compiler automatically handles the problem of de-

ciding which locations of memory will actually be used for

storage. In the NELIAC language, storage requirements are

specified by the programmer by making up identifiers or

names to which the compiler program will automatically

assign memory locations. Throughout a given program, any

name, once assigned, will refer to the same memory location

or group of memory locations. An exception to this rule

(namely, temporary or local names) will be explained later.

The numerical values contained by these memory locations are

then referenced by name in the program logic part where

dynamic operations are indicated. Consider the following

example:

NR#29, p.4



SNAREC REFERENCE #29, P.5

Algebraic Equation NELIAC Statement

A + B = C ,A+B-C,

The algebraic equation states that the value of A is added

to the value of B. This sum is equivalent to the value of

C. The NELIAC statement is more dynamic in that a certain

action is implied by the right arrow. This right arrow is

a store operator; thus, the value in the memory location

referenced by the name A is added to the value referenced by

the name B and the sum is stored into the memory location

named C. That the store operator is not equivalent to the

equal sign can be seen from the following example:

P A2 + 1 -* A2 ,

The NELIAC statement says to add one to the value in the

location referenced by the name A2. This sum is to be com-

puted and stored back into the location referenced by A2

thereby replacing the old value by the new.

NR#29, P.5
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NELIAC PROGRAM STRUCTURE (General)

The two parts of a computer program, the storage part

and the operating part, are handled in NELIAC by the d -

sioning statement (or noun list) and the vrora" logi (or

body of the program), respectively.

In the dimensioning statement, the programmer specifies

storage requirements by making up names to which the compiler

will assign storage locations. Each location so named is

called a variable since it is possible for the program to

change its value. A group of memory locations to which the

programmer assigns only one name is defined as a table (of

variables), also called an array (a one-dimensional array

usually being referred to as a list). Later in this docu-

ment it will be seen how the programmer may assign a name

to part (i.e., certain bits) of a memory location or in the

case of a table (array or list), how he may assign a name

to the same part of each location of the table. Each part-

memory location so named then becomes a variable. In the

dimensioning statement the programmer also assigns initial

values and specifies the mode and number format of each

variable and indicates output formats for variables whose

values are to be printed.

NR#29, P.6
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The program logic is the operating part of the program

which indicates the sequence of dynamic operations to be per-

formed. Basic to the structure of the program logic are the

statements of which it is comprised. Comparable to ordinary

English, statements of program logic are set off by punctua-

tion symbols of which there are 5:

Comma

; Semi-colon

: Colon

* Period

Double Period

the double period being used only to indicate the end of the

program logic part and, hence, the end of the flowchart (or

subprogram). Following is an example of two statements which

might be used to compute the expression

~-C

and store the result into location G:

, A * B * H , (H + C) / (H - 2 * C) , G,

This is not a complete program, however. Only part of the

program logic is illustrated above. Every name used by

NR#29, P.7
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these statements must be defined beforehand or later in a

dimensioning statement (or in a function definition). A

complete flowchart to perform this simple task for specified

values of A, B, and C might be as follows:

NELIAC FLOWCHART NOTES

5 Load Nmber signifying the beginning of
the flowchart to the compiler.

A = 1, Dimensionina Statement: Initial values
B = 2, are specified and names assigned to each
C = 1, memory location. Note that locations are
H, allocated and given an initial value of
G,, zero when initial values are not speci-

field. A final comma in the dimensioning
statement is normally omitted since the
semicolon also functions as this comma.

The first semicolon indicates the begin-
ning of the operational portion of the
flowchart.

COMPUTE: COMPUTE is the name th flowchart
This type of statement is called a defin-
ition or label.

A * B -, H, Progrsm login: A strict left to right
(H+C)/(H-2*C)-0G, flow is followed. Spacings, indentations,

blank lines do not alter the flowchart in
any way (except in the case of the ALGOL
words which will be explained later). A
final comma in the program logic is norm-
ally omitted since the double period also
functions as this comma (except for sub-
routine and function calls).

The dul pe iod indicates the end of
the flowchart.

NP#29, p.8
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NELIAC FLOWCHART

Although a NELIAC program may consist of a single

dimensioning statement followed by a single block of pro-

gram logic and, indeed, short NELIAC programs are written

in this form, it is very convenient and, at times, abso-

lutely necessary, to be able to write programs as a series

of subprograms called flowcharts, each of these flowcharts

having the form of a NELIAC program; i.e., a dimensioning

statement followed by the program logic. All of the sub-

programs or flowcharts comprising a single NELIAC program

are compiled together in a single compiler sweep in an

order determined by the programmer just as if the entire

program were written as a single unit. Hence, a programmer

may write and check out a long program as several independ-

ent units; in fact, the flowchart concept makes feasible

the compilation of long and difficult programs whose various

subprograms have been written and checked out by different

programmers. In addition, the flowchart concept makes the

correction of program units, the substitution of new units

for old units, and even the addition and removal of units,

a trivial procedure. Finally, the finite memory space of

any computer requires that very long NELIAC programs (more

NR#29, p.9
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than ten to fifteen double-spaced typed pages in the case of

the NAREC) b, written as two or more separate flowcharts;

although, even here, the number, size, and arrangement of the

flowcharts is still entirely up to the programmer's discre-

tion subject solely to the limitation that no flowchart

exceeds the maximum length dictated by a computer memory size.

Inasmuch as the structure of and the language used in

each of these subprograms are identical to the structure and

language of a program written as a single NELIAC unit (or

flowchart), the programmer need only consider a program as

consisting of a single unit throughout most of this document.

Toward the end of the document, he will see how the exten-

sion of everything he has learned about the NELIAC language

and the NELIAC program naturally applies to multiple-unit

programs.

COMMENTS

It is often helpful to insert comments in English to

the NELIAC language in order to clarify the meaning of the

program to the reader. This capability is provided by

NELIAC-N according to the following rules:

1. Enclose the comment in parentheses.

NR#29, p.10
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2. A colon must be placed as the next operator after

the left parenthesis. The colon may be placed

immediately after the parenthesis, or any word or

phrase which meets the NELIAC definition of a

name may be inserted between them. The word

COMMENT is customarily inserted here.

3. Any words, numbers, or symbols may be included in

the comment with the exception of the right paren-

thesis which signals the end of the comment and the

double period (..) which signals the end of the

flowchart to the compiler.

4. Comments may be inserted between any two statevi'_nts

of the dimensioning statement or the program logic.

5. Normal punctuation should either precede or follow

the parentheses.

EXAMPLE:

, A -) B, (COMMENT: A -. B means to store the

current value of location A into

location B.)

Of course, comments are meant to be an aid only to the

reader of the program and have no meaning whatsoever to the

compiler.

NR#29, p.11
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ALGOL WORDS

In addition to the ALGOL word COMMENT, whose use has

been described in the preceding section, NELIAC also pro-

vides, in a slightly different sense, for the use of the

ALGOL words

GO TO

DO

IF

IF NOT,

and, FOR

to describe (but not define or specify as in ALGOL) certain

procedures in the flowchart. These five words (or word

phrases) when written as above; i.e., when set off by spac-

ing except IF NOT, which must be immediately followed by

a comma (which may or may not be preceded by spacing), and

with internal spacing in GO TO and IF NOT, are known,

in NELIAC, as ALGOL words and have special significance in

the flowchart. They are parenthetical to the compiler;

i.e., they are completely ignored by the compiler (except

when inserted within a double period). As such, they may be

used to describe certain procedures in the printed copy of

the flowchart. However, just as it is certain operator com-

binations which determine (or define) a comment, the word

COMMENT having no meaning (if used at all), it is certain

NR#299, p.12
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operator combinations, and only these operator combinations,

which determine these procedures, the descriptive ALGOL

words having no meaning (if used at all) to the compiler.

The sole function of these words is to improve the reada-

bility of the printed copy of the flowchart. In fact, the

compiler will completely ignore these words no matter where

they are used in the program (except within a double period).

The use of the individual parenthetical words will be descri-

bed as the procedures to which they apply are defined.

Hqwever, if any of these character combinations are

used without the spacing (multiple spaces being equivalent

to a single space) described above in their definitions,

the character sequence will be considered, not as an ALGOL

word to be ignored, but as a bona fide part of the program.

Hence, these character combinations may be used as portions

of names defined by the programmer. It should be borne in

mind that spacings, indentations, and blank lines may alter

a NELIAC program only in the possible determination of these

ALGOL words.

NR#29, p.13
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II. THE STORAGE PART

DEFINITION OF NAMES

Names are the means by which the programmer refers to

and manipulates the quantities in which he is interested in

NELIAC program,. In particular, each name defined by the

programmer is assigned a cell or location in the computer

memory (or part cell in the case of partial words). NELIAC

names are divided into two major classes: nouns and verbs.

Nouns are those names defined in the dimensioning state-

ment of the flowchart and of the function definitions.

Verbs are those names defined in the program logic (exclud-

ing the dimensioning statements of function definitions)

and, as will be seen later, are actually labels or names

of procedures. The rules of formation of all names whether

nouns or verbs are the same and will be given here although

only the definition and usage of nouns will be discussed.

At the time the definition and usage of the various verbs

are discussed, it should be borne in mind that the general

rules of formation of NELIAC names given here apply to verbs

also.

N"9, p.14
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Nouns are the means by which a programmer writing in

NELIAC controls the use of computer memory locations for

storage. He assigns a name (specifically, a noun) to each

single memory locationp each group of memory locations, to

each part-memory location or to each group of part-memory

locations used for storage. The name itself is left to the

imagination of the programmer limited only in that it must

begin with a letter of the alphabet, must contain only

letters, spaces, and numbers, and must be uniquely deter-

mined within its first 16 characters excluding spaces and

.4,G!OL words. Capital and lower-case letters are inter-

changeable and may therefore be used at the discretion of

the writer. Single letters, with the exception of I, J,

K, L, 41, and N, are permissible names. These letters - 1,

J, K, L, 10, and N - when standing alone refer to the six

index registers which are always automatically available as

fixed-point, full-word integers having four hexadeciml•

digit JO format and which, consequently, must never be

dimensioned (except as temporary names or as dummy par.•-me-

turs in function definitions, both of which will be expl2in-

ed later). Other names used by the compiler will be dis-

cussed in the appropriate chapters and are listed in

Appendix C.

NR#29, p. 1 5
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Examples of legal NELIAC names:

Q
MA 10
INTEGRAL
L2350 HL 543
BEGINNING OF FLOWCHARTS
FORMULA
COMMENT

CONSTANTS AND VARIABLES

A constant is a value not defined by name in the

dimensioning statement but written explicitly in the

program logic. Note the example:

A2 + "i -) A2

where 1 is the stated constant. A constant is thus dis-

tinguished from a variable, the latter being defined in the

dimensioning statement and referenced by name throughout

the program logic. A variable may or may not actually change

its value during the operation of the program.

All numbers in NELIAC may be written in either one of

two modes, fixed point integer or floating point format.

Floating point numbers differ from fixed point in allowing

for decimal fractions as well as integers, and, therefore,

much greater accuracy in computation without requiring

scaling. These numbers are commonly and easily used in

NR#29, p.16
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computer problems as the alignment of decim3) Loints during

computation is handled automatically.

Following are examples of fixed point constants written

within the program logic.

, 25- D-*C ,
A- 476-* X
B/ (-5) -Y

In expressing a floating point constant within the program

logic, a decimal point must distinguish it from a fixed

point value. As machine operations on the two modes, fixed

point and floating point, are quite dissimilar, care must

be taken to avoid mixing modes in arithmetic or store operp-

tions. The expmples following illustrate the use of legnl

floating point constants. (Note: The last exsmple is an

illegal statement using mixed modes.)

, - ,.068 -. C
I -D A
0.0241 -1 Y

,- 25.0 -2 ,
".0 * 6 - TOL"PANCE,

5 -- -0.0 ÷ Q, (COMMENT: ILLETCL STArI::¶ENT)

The last example, legalized, might read

5.0 - 10.0 - Q ,

NR#29, P.17
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For numbers less than one in absolute value, a zero must

be written before the decimal point.

The constant zero, whether fixed or floating point,

must always be written as 0 in logic.

DIMENSIONING FIXED POINT VARIABLES

The initial values of variables to be used in a pro-

gram are set in the dimensioning statement, and names are

defined by which they may be referenced. Throughout the

pirogram logic, variables are treated either as fixed point

or floating point numbers according to the method by which

they are defined in the dimensioning statement. Once a

variable has been dimensioned there is no way whatsoever

of changing its mode or format. In particular storing a

number or variable into another variable of the opposite

mode will place the current representation of this number

c.r variable into the variable but will not change the mod(,-

oi the latter H.ri~ble. 1ence, it is strictly forbidd.i-n.

l-ample A illustrates legal definitiozi of voriab]es having

decimal fixud-point numbers as initial valueo.

Example A:

NR OF SAMPLES 25
ALPHA - I ,
BETA - 8437 ,

GAMMA ,

NR#29, p.1 8
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Any unique name followed by an equals sign and the value of a

decimal fixed point number is sufficient for defining a

variable of that name with initial value equal to the given

number. Each definition must be separated by a comma. If

a fixed point variable is to be given an initial value of

zero, the name followed by a comma is sufficient. Numbers

are treated as positive unless preceded by a minus sign. In

fact, in the dimensioning statement, a positive number may

not be preceded by the plus sign, but must be unsigned.

When defining a table of variables, the size or length

of this table also must be indicated. The number in paren-

theses immediately following a name indicates the number of

entries in the table. Irrespective of the mode associated

with the name, this list length must always be in unsigned

fixed point integer - either decimal or hexadecimal, After

the equals sign the values of the initial entries, separated

by commas, are written. Suppose a table is to contain five

variables. Then five memory locations of the computer must

be allocated. The following example defines such a table of

fixed point numbers called TAB X.

TAB X (5) = 5, 45, 8, -3, 8,

NR#29., p.19
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As shall be studied in detail later, individual values of

the table may be called upon in the program logic through

subscripting of a single name, in this case, TAB X. In t

mathematical notation, a subscript usually is written as a

small character below the line; e.g., TAB X to indicate0

the first entry of the table, in this instance, to reference

the location containing the value 5. TAB X would refer to

the second entry, (the value 45), etc. In the NELIAC

language subscripting is indicated by the use of brackets

around the subscript in the following manner: TAB X (0],

TAB X (1], TAB X (2], etc. As subscripting in NELIAC begins

with zero, not one, TAB X (3] refers to the fourth entry of

the table which (above) contains a value of -3. Since the

name TAB X without subscript references the first entry of

the table, the use of the notation TAB X (0] is redundant,

but it is nonetheless legal,

Note, in the following example, that twenty-five

locations are allocated for a table named XCOORD, but only

five fixed-point initial values of the table are specified.

XCOORD (25) = 10, 5, -8, 3, 2,

The remaining locations of table XCOORD, since initial

values are not explicitly specified, will contain zero

NR#29, p.20
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quantities. The definition of an entire table with

initial values of zero is written; eog., as

PMATRIX (100),

One hundred memory locations are thus reserved for one

hundred fixed point integer values which may be computed

and stored into these locations during operation of the

program,

Zeroes may be dimensioned implicitly in any cell of a

table by the proper use of punctuation, In the example

below, part of the table initially contains zero quanti-

ties. Of course, the zeroes may also be stated

explicitly,

XMATRIX (9) = 5, 6P 7,

p -3p 4p

, , 2,

In NELIAC-N, the range of fixed point integers which
13

may be explicitly represented is from -(10 -1) through
13

(10 -1) inclusive although NELIAC-N will handle integers44
which arise in calculations up to the range -(2 -1)

44
through (2 -1) inclusive.

NR#29, p.21



NAREC REFERENCE #29,9p.22

DI ENSIONING FLOATING POINT VARIAB LS

Initial floating point values are assigned in the

dimensioning statement in much the same manner as fixed

point values. The essential difference is that floating

point numbers are characterized either by a non-leading

decimal point in the number and/or by multiplying the

number by a power of ten, the ten being only implicitly

stated. (See section headed Constants and Variables for

examples of the proper floating point notation of constants

in the program logic. Ail forms of floating point numbers

given below for dimensioning are valid forms for use in

the program logic with the single exception of the form

(number without a decimal point) * (exponent).)

For example, the number 500 is written in scientific

notation as 5 9 102. In the NELIAC dimensioning state-

ment, this number might be written as 5 * 2. This number

may also be written as 50.0 * 1 (implying 50.0 • 10 ),

or as 5000.0 * -1, 5. * 2, 500., 500.0, etc.. Numbers

of very small or large magnitudes are thus conveniently

written; eog., the number 0.00005 is written in scientific

notation as 5 * 1O"5, in the NELIAC dimensioning statement
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as 5 * -5, as an alternate form. The following example

illustrates proper dimensioning of floating point numbers:

HUNDRED = 100 * 0,
PI = 0.31416 * 1,
OMEGA - -4.25 * -3,
ZERO = 0 * 0
E = 2.718281b,
FIFTEEN = 15.,

A table of floating point values is defined in a manner

similar to a table of fixed point values: the defining

name followed by the number (in fixed point notation) of

entries in the table enclosed within parentheses. However,

the entries themselves must be written in floating point

notation.

FLTING TABLE (5) = 5 * 3, 1 .23,
0.34, 4.2 * 0,
10.8 * -1,

In the matter of sign, the exponent of a floating

point number differs from all numbers in that the suppres-

sion of the plus sign is not required; e.g.

FL NUMBER = 5 * 6,
or FL NUMBER = 5 * +6,
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A table1 initially zero, later to be filled by the

program with computed floating point values may be defined

in the following manner:

T TAB (25) = 0 * 0,
or

T TAB (25) = 0.0,

Because of this definition any variable referenced in the

program logic by the name T TAB and a subscript (which may

be implied for T TAB [0]), will be treated as a floating

point variable.

Likewise, a period after a name or an array will

define the name or array as floating point with initially

zero value or values:

ZERO.
T TAB (25)°

In the case where such a definition is the last definition

in a dimensioning statement, both the period and semi-

colon are required.

The range of floating point numbers in NELIAC-N is

from 10"231 through '10+307 with characteristics of 36 bit

significance (00 decimal places).
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HEXADECIMAL NOTATION

A number format conveniently used by a programmer in

any part of the program is that of hexadecimal notation.

Hexadecimal numbers in the computer are handled as fixed

point integers and in NELIAC-N are distinguished from

decimal fixed point integers by a preceding hexi sign.

Hence, one defines hexadecimal numbers in the dimensioning

statement as illustrated in the examples below:

HEXADECIMAL NR = #2ab7,
MASK I = #7f ffff ff,
HEXI TABLE (3) = #26a8,

$6754,
#ffff,

NEG HEXI NR -#3A7,

Hexadecimal integer constants are entered directly in the

program logic and used in arithmetic expressions in exactly

the same manner as decimal integer constants:

#7e3 + B -, A

The hexadecimal notation may be used for fixed point

integers only, never for floating point numbers. The hexa-

decimal integers are signed just as other numbers, i.e.,

a plus sign must be suppressedj the minus sign immediately

precedes the hexi sign.
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The range of hexadecimal integers when used as

numbers is from -(244 -_1), through (2 44 ), inclusive.

However, NELIAC-N does accept 45 to 48 bit (12 hexa-

decimal digit) hexadecimal numbers in the machine-language

sense of a NAREC word.

Appendix B Is a flowchart illustrating the various

forms of dimensioning nouns available in NELIAC-N. The

forms illustrated are typical dimensioning entries but

are, by no means, exhaustive of the various forms and

combinations available.
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III. ARITHMETIC OPERATIONS

BASIC OPERATIONS

The basic arithmetic operations in NELIAC are denoted

by the following symbols:

+ Addition
- Subtraction
* Multiplication
/ Division
? Exponentiation

A mathematical expression may be built up with any combina-

tion of these operators, and algebraic grouping may be as

coxplex as desired. Every series of arithmetic operations

sho•uld terminate with the storage of the result in either

a named variable or an index register by the use of a right

arrow or must terminate in a comparison. A NELIAC state-

oent is completed in this manner, and every such statement

is terminated by a comma (or its equivalent in special

casrs). It must be remembered that the mode of the values

used in any one expression iust be consistent; i.eo, fixed

and floating point variables and constants may not be mixed.

For example, if a variable LOAD has been defined in the

dimensioning statement as a floating point variable, then

the following statement would be illegal:
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,LOAD + 5 -* LOAD,

Nor should the result of a fixed point computation be

stored into a floating point variable. For example, if

the name RESULT is dimensioned as a floating point vari-

able, and the name INTEGER references a fixed point

variable, then the following statement would be illegal:

,INTEGER / 5 -+ RESULT,

The sole exception is the zeroing of a floating point

location. If the name RESULT is dimensioned as a float-

ing point variable:

0 -) RESULT,

i.e., the representation of a fixed point zero is used.

In NELIAC-N, a statement may terminate in a sequence

of store instructions. In fact, a store instruction need

not In itself terminate the series of arithmetic opera-

tions since the store instruction and all five of the

arithmetic operations listed at the beginning of the chapter

are legal immediately after a store instruction. An

example is:

A * B - C D D - E + F -- H - I -> J * K -- L/M -> N

NR#29, p.28
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HIERARCHY OF ARITHMETIC OPLRAT IONS

The hierarchy of operations consists, first, of

expon-t..ntiation, seconu, of miltiplications and divisions in

sejuenc from left to right, and, third, additions and

subtrations also in bequence from left to right. Paren-

thcess may be uscd to alter the sectw•ince of operations as

rCrJeod,.ý. The only use for the ev, ont-nriatior symbol is to

multir•.y or divide a fixed point varjable b.; a liositiv-

nower C:0 =. In fa, t, B * 2 T -3, merely shifts (cycles)

e.rithm,;21Jcally the contents cf 11 to thc left binary

i;L.ces. .mn the other hand, division by j uositive po)*•r

0 '.-rithmetically shifts tie •var.ipb c To' he righth• '.n,

in,1icntd number of places.

in N1,LIAC-N, the notation B * t 5 + B results in the

ull regi-tor (h8 bit) shift of the contt!nts of B to the

left t: binary places. The corresponding division notation

ti, used for the full register right shift.

The following examples illustrate hierarchy of

arithmetic operations (all statements belotv Pre legal):
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EXAMPLES OF ARITHMETIC STATEMENTS

NELIAC STATEMENT EQUIVALENT NLJIAC STATEMENI

I ) A + B / C -, D ,+4 (B /C) ' D

A) A 4- B /C + D *E -)- F,, A + (B /C) + (D *E) 4 Fs

3) A *2 t 5/ B -Y, (A *2 T5) /B -Y,

4) A B C Z, (A B)/ C -Z,

5) A /B *C Z, (A /B)* C Z,

6) A - B * C + 1) P, A - (B * C) .1- ) - P,

7) A IB *D / C -•P, ( (A / B) *I) C -) P,9

FIXED AND FLOATING POINT PACKAGES

In NELIAC- N, fixed point multiplication and division

ic -ecomplishe1 through return jumps to the sub~routines

MULTIPLY and ujViDE respectively, these subroutines being

the fixed point package which is automptically compiled in,.

any program rewuiring it.

Likewise, floating point adidition, subtraction, multi-

plication, and division are accomplished through return

jumps to F.DDL, FSUB, FIMUL, and FIDIV respectively in

the floating point package which is automatically compiled

into any program requiring it,

Hence, use of these names must be avoided by the pro-

grammer since he can never be sure when either or both of

these packages wiil be called into a program containing his

flowchart.
NR#29, p.30
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IV. TRANSFER OF CONTROL

NORMAL JUMPS

In programming, certain conditions which necessitate

skipping over portions of the program to some other point

of entry may be met within the program logic. This would

necessitate transfer of control of the program to a set of

statements other than those continuing in natural sequence.

It is necessary, therefore, to label or define that set of

statements to which a jump is to be made. This is accom-

plished by assigning a name (which is thus classed as a

verb) preceded by punctuation and followed by a colon to

any portion of the program logic.

ADD: A + B + etc..o0

A jump to this segment of the pi'ogram is specified by the

use of a period following the ,definitive name. A state-

ment such as

,,ADD.

would immediately transfer control, or jumv, to that portion

of the program so defined, in this case, A + B + °0oo The

ALGOL word GO TO described in Chapter I may be used for

descriptive clarity in the flowchart, in which case the

NR 29, p.3"
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above example becomes

GO TO ADD.

As is the general case with ALGOL words used in NELIAC,

the GO TO is completely parenthetic, The jump is establish-

ed by the operator combination (punctuation) NAME. ,

In the following example, a jump made to MULTIPLY

would execute every statement following, including those

labelled COMPUTE. The natural sequence of the program is

followed unless otherwise specified by a jump statement.

,ON: NR PASSES -* CT PASSES,
MULTIPLY: A (B + C D - Z,

P Q Y,

COMPUTE: (G H) /(Y Z) -ZOO,

The assignment of meaningful names to such NELIAC para-

graphs often gives greater coherence to a program even

though a jump to that name is not specified; this device

then becomes merely a labelling device which in itself does

not cause generation of machine instructions.
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SUBROUTINES AND RETURN JUMPS

In some cases a return JMp is desirable; i.e., a

jump is made to a special segment of the program called

a subroutine. After the subroutine has been executed,

control is to be returned to the point of the program

logic immediately following that from which the jump was

made,

The naming of a subroutine is familiar -- any unique

name (which is thus classed as a verb) preceded by

punctuation and followed by a colon -- however# the

limits of the subroutine must be defined by braces The

subroutine may be as long and complex as desired as long

as the limiting braces surround it. Hence, a subroutine

is easily recognized by the sequence: punctuation#

name, colon, left brace, etc.

Example of a subroutine:

, GENERATE: I RAND, X * Y -)Z Z

To execute the statements within the braces, the sub-

routine must be calle in the following manner (elsewhere

in the program logic):

, GENERATE,
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where the definitive name is followed by a coma (except

for a subroutine or function call ending an alternative

of a comparison, in which case the semicolon ending the

comparison customarily replaces the comma), indicating a

return jump to the subroutine. The ALGOL word DO may be

used here for additional clarity in the printed copy, the

word DO, of course, being parenthetic. In this case the

preceding example becomes:

0 DO GENERATE,

Notice, within the subroutine GENERATE, a call for

another subroutine, RAND, is made. After execution of the

statements which must be defined by RAND elsewhere in the

program, the value of X * Y is stored into the variable Z,

and control is transferred back to any statements follow-

ing the call for GENERATE.

To avoid having the sequence of the main program logic

inadvertently flow into a subroutine, all subroutines are

customarily written at the end of flowcharts. It is

necessary to program Jumps around such defined subroutines

NR#29, p.34



NAREC REFERENCE #29,p.35

if they are placed in the way. An example will serve to

clarify this point.

, A + B -* C, CLEAR, NEXT.
CLEAR: 1 0 I4-J4-K--L- -M-Nf
NEXT: C + D -E, etc.

In this example, A + B is stored into C, then the 6 index

registers I thru N are cleared to zero by calling on the

CLEAR subroutine. Then in order to keep the program from

illegally trying to operate the CLEAR subroutine as the

next sequence of instructions, it is necessary to jump

around it to location NEXT, where C + D is stored into E,

etc.

It must be noted that while any number of subroutines

may be called within another subroutine (except the sub-

routine itself, of course), no subroutine may be defined

within another subroutine.
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V. DECISIONS

COMPARISON STATEMENTS

Comparison statements are the means by which questions

may be asked regarding relative values of two or more

variables or constants, Almost any meaningful question may

be asked in the comparison statement by using the following

comparison operators:

< >=

Basic comparison statements are illustrated below, Note

the colon must end the comparison statement.

A<B
, A>B:
, A=B :
, A$B:

, A• B :SA• B:

These operators may be joined in the general form

, A < B 4 C / D etc. :

where the comparison statement has its usual mathematical

meaning. This usage will be described in more detail

later in this chapter. Immediately following the question
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(comparison statement) two alternatives are written. The

first alternative will be operated if the answer to the

question is true; the second# if the answer is false,

COMPARISON STATEMENT FIRST ALTERNATIVE SECOND ALTERNATIVE

A = B : TRUE ; FALSE I

An alternative may consist of one or more statements, the

last of which is terminated by a semicolon (or a period)

rather than a comma to indicate the end of the alternative

as well as the end of a statement, Unless an alternative

itself breaks up the normal sequence of the program logic

by specifying a normal Jump to some other part of the

program logic, the statement following, the false (second)

alternative will be operated next, Consider the following

examples;

C t D A ..C -* I + I - I
B *C eE;.
COUNT + 1 COUNT,

Here1 a comparison is made: if the value in C is

greater than or equal to that of D. then execute the true

alternative which stores the value in A times the value

in C into location E and adds 1 to index I, If the value
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of C is less than that of D, execute the false alternative

which stores the value in B times the value in C into

location E. In either case, continue by executing the

statement following the false alternative which adds 1 to

COUNT, etc.

In order to make the NELIAC program easier to reads

the ALGOL words IF and IF NOT, , parenthetic as always,

may be added to the comparison statement complex (See

Chapter I). For instance, the last example may be written:

IF C ) D : A * C -> E , I + 1 -) I
IF NOT, B * C - E ;
COUNT + I - COUNT ,

These words do not add any meaning to the program, however,

and are ignored by the compiler during compilation.

Constants and the index registers of the compiler also

may be used on either side of a comparison statement.

Again, however, care must be taken to avoid comparing fixed

point values with floating point ones. Algebraic grouping

may be as complex as desired on the left hand side of a

comparison statement, but the right hand side must consist

of a single unsigned variable (which may be subscripted

and/or bit-handled as explained later) or an unsigned
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constant. Thus, the following statement is legal:

(A + B) / C > D: TRUE; FALSE;

while a case such as

(COMMENT: ILLEGAL STATEMENT)
D ( (A + B) / C: TRUE; FALSE;

is illegal. Note, in the case of comparison statements,

the result of an algebraic expression is not necessarily

stored into a variable although it may be:

(A + B) / C -, X > D: TRUE; FALSE;

Return jumps and unconditional jumps are legal commands

within either alternative, In the case where unconditional

jumps are made, the period instead of a semi-colon will end

either the true or the false statement. Examples:

A > B : START. END.

Aý B : C4-)D, 5.0+ E-+F, BEGIN.
RAND, I + J -* J, FINISH;

Notice how the return jump made to the subroutine FINISH

is indicated as FINISH; Though FINISH,; is not in error,

the coma would be redundant in this case.
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Another illustration of the comparison statment:

Suppose it is desired to set Y to one of 3 values accord-

ing to the following criteriat

8.7 2 if 0.0 ( X < 10.9
Y=16. 9 if 10*9 4 X < 21.6

24.0o7 for any other value of X

Then, the program is to continue by transferring control

to MORE, A NELIAC solution might be:

IF 0 X < 10,9: ONE,, MORE.;
IF 10,9 4 X < 21.6 : TWO; THREE; MORE,

ONE : 18*72 -.*Y -
TWO: . 6.19 " Yf
THREE ; )24,0 7 * Y !

The above solution is by way of illustration, Perhaps a

better solution would be:

0 ( X < 10,9:

10.9 ( Y < 21,6:16,!9 " Y1609.-7* Yj

MORE. 24*07 -P

as described in the next section, NESTED DECISIONS.
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Note that it is always mandatory to indicate the end

of eadh alternative with either a period or a semicolon

once a comparison statement is written.

If nothing is to be done within a single alternative$

a semicolon suffices to indicate continuation of the

sequence of the program. Example:

A < B > C: ; X -) Z; Y -* H$

In the case that the relationship in the above

example is true, no statements are executed and the

sequence of the program continues with the value of Y

being stored into H. If any part of the relationship is

false, X is stored into Z and the sequence. continued with Y

being stored into H. The situation may be reversed and

nothing done if the relationship is false.

Example:

A < B > C: X - Z;; Y + H,

In all cases, the termination of each alternative must be

indicated by either the use of a semi-colon or a period.

The number of statements used in either alternative is un-

restricted.
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NESTED DECISIONS

Decisions may be nesteu wAthin other decisions. Note

the following example:

,LOL IN IT < XCOORD:
RAND, X ) MSW PROB:

5 -4 MINETABLE;
- 1 -* MINETABLE;;

NULL -4 MINETABLE;

Begin with the comparison LOLIMIT < XCOORD. If the

relationship is true the statements of lines 2, 3s and 4

will be executed; if false, the statement of line 5 will

be executed. Within the first true alternative is a

return jump to the subroutine RAND and another decision.

The true and false alternatives for this second comparison

are merely distinguished by semi-colons. With nested

decJiions, care must be taken to insure that a second

comparison is completed within a single alternative of the

first comparison,

In order to improve readability in writing comparisons,

the convention that successive comparisons will be indented

by multiples of three spaces has been adopted. Further.

more true and false alternatives are never placed on the

same line (unless one is nonexistent). Althouh lppaterial
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to the compiler, it is recommended that this convention be

rigidly adhered to in all nested comparisons and in all but

the simplest single comparisons. Examples are

A = B:
C D:

I -b-E;

2 -* E;;
3 -* E;

A =B:
C =D:

E 4:
5 + F;
6 - F;;

7 F;
A - 4 -) I, SUBROUTINE;
A > B:

A -. B:
&~B

NELIAC-N permits the use of up to 15 active nested

comparisons at any one time.
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BOOLEAN OPERATORS

The Boolean operators of AND fl and OR U say be used

to string a number of these comparisons in a statement$

as long as only one type of operator is used in such a

statement. Note the following examples:

DIMENSION FLAG = 0:
NEXT OPERATOR / COLON n
LEFT BRACKET < CURRENT OPERATOR < RIGHT ARROW:

SET OPERAND.
TEST FOR PASS COMMAND;;;

A < B U C < D U F / K: TRUE; FALSE;

Note that a statement of the form:

A < B < C X D: TRUE; FALSE;

is really a series of and statements; namely:

A < B n B 4 C n C / D: TRUE; FALSE;

Hence, compound statements of this type may only be linked

with a series of Boolean and comparisons and not with a

series of Boolean or comparisons,

In a group of nested comparisons though, the form of

each individual comparison statement is independent of the

forms of all the other comparison statements.
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A string of and comparisons may contain up to .6

individual comparisons; a string of or comparisons may

contain up to 15 individual comparisons. Since there are

different restrictions on the permissible forms of the

left and right sides of a comparison statement, they must

be defined for Boolean strings. The exact definition is

that a right side begins immediately after one of the six

relational operators and is terminated by the next colon,

Boolean and, or Boolean or. In the case of a Boolean and

or Boolean or, a new left side then begins. In the case

of a statement like A < B < C < D: the right side restrict-

ions apply to all quantities except A.
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V1J. SUSCRIPTEL VARIABLES

Suppose, as an example, we wish to compute the sum of

the squares of fifty numbers, X0 to X4 9, and store the

result in SUMSQ. Each element in this table of fifty

variables may be called upon by subscripting the name of

the table X. Subscripting is accomplished by the use of

brackets H surrounding the number indexing the individual

element of the table. Remember, in NELIAC, subscripting

begins at zero and not one; thus X [0] would refer to the

first value of the table while X [49] would refer to the

last; i.e., the fiftieth.

Indexing also may be done via one of the 6 index

registers of the compiler, referenced by the names I, J,

K, L, M, and N or by any fixed point variable dimensioned

by the programmer. These registers may be treated in a

manner similar to any fixed point variable. Within the

program logic, therefore, an element in a table may be

referenced by X (I] and the index register I augmented as

necessary.
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The most general form of subscripting in NELIAC-N is

OPERAND (SUBSCRIPT t number ]

The exact address or location represented by this expression

is obtained as follows: take the address of the name

OPERAND as the base address, add to it the address currently

contained in the location identified by the name SUBSCRIPT,

and add or subtract (as the case may be) the explicit value

of number. The resulting address is the address of the

variable being referenced by the given expression. In the

expression, OPERAND may be any nkme dimensioned in the

program, SUBSCRIPT may be any fixed-point entire-word noun

dimensioned in the program (including :he index registers

I, J, K, L, M, and N automatically dimensioned-for the pro-

grammer), and number may be any unsigned fixed point

integer - decimal or hexadecimal. In this general expres-

sion, all degenerate cases formed from the suppression of

any one or any two of the three quantities involved are valid

forms having the meanings immediately derivable from the

general form. The case where the variable OPERAND is sup-

pressed is covered in the chapter on ADDRESSES OF NAMES.
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With this inforination. o nwe,.y illustrate one method of

accomplishing the sum s,,uzre problem.

BLG IN.

0 - I - SUMSQ,
Cý)MPUIL SUMSQ:
X I X [IJ -i SUM51' - SUMSQ.
I I -0: --0 k', IT. COMPUTI' SUMS•(.

E•XIT; .

All subscrirting is accomplished by v;riables, includ-

ing the index registers, and/or fixed point constants,

though, of course. the vzaues in the table being subscripted

may be all fixed point or all floating point.

Legal subscripted variables:

MAbT[s
x (j]
TNT [K
Z [J - 3J

W
Y [NAME ! 7300O
V C-5oi

In general, subscripted variables are treated just like

ordinary vcriables. For examole, they may be used in

arithmetic expressions:

A [I . . B IJ. - 3J / C (i0] -, ) (M]

P.r9 fib~
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.nd coi eithor side of a comparison statement:

A Ilj B tL-13j g C (10] : TRUE; FALSE;

etc.,.

SUB•SCr IPTEi) STRAIGHT JUHPS

One useful feature of the NELIAC language is that

of the Jump Table, another method of branching within the

program logic. Jump tables are defined, within the program

logic, by punctuation, a unique name (which is thus a verb),

a colon, and a series of jump commands.

JTABLE: JUMPA. JUMPB. JUMPC.

A jump command to an element of this jump table may be

written as

,JTABLE ill.

which indicates an unconditional Jump to the Ith element of

the jump table which is, in turn, a command to jump to a

portion of the program defined elsewhere. For example, if

the value of index I = 0, the above command will cause a

jump to JUMPA, etc....
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Subscripting may be applied only to straight jumps;

i.e., jumps to entry points, and may not be applied to

return jumps; i.e., subroutine calls and function calls.

SUBSCRIPT PACKAGE

In NELIAC-N, subscripting by name is accomplished

through a return jump to the subroutine SUBSCR1P contained

in the subscript package which is automatically compiled

into any program requiring it. Hence, this name must not

be used by the programmer.
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VII. LOOP CONTROL

Perhaps one of the most useful features of today's

high speed computers is the capability of repeating certain

operations; i.e., the procedure remains the same, but the

variables used are different. This objective may be accom-

plished in NELIAC by the use of LOOP CONTROL, a method of

indicating the procedure to be followed and the specific

number of times it is to be executed, The use of loop con-

trol along with that of subscripted variables provides a

powerful tool in computation. Consider the following

example.

J = 0 (1) 24 1 P [J] + Q [J] -. TAB [J]

The procedure to be repeated is enclosed within braces, with

the loop control preceding. Conventionally, one of the

index registers (I, J, K, L, M, and N) is used for loop

control and subscripting although any other full-word

integer variable may be used just as efficiently. The

statement above reads that the index register J is set to

zero and the procedure executed for the first time; thus,

the first value of the table P; ioe., P (0], is added to the
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first vaiue of the table Q; i.e., Q (0], and the sum is

stored into the first cell of the tabl", TAB (0]. The

index register J is incremented by I and the loop repeated

this time using variables P['], Q[1], and TAB [1], etc...,

until 25 values ( corresponding to the subscripts 0 to

24) are added and stored into the 25 locations of table

TAB. Optionally, the parenthetic ALGOL word FOR may be

us•ed for clarity in the printed copy. In that event, the

above example becomes

FOR J -0 (1) 14 IP [J] + Q (J)] * TAB [J] I

Let us look closer at the basic format of the loop

control.

FOR ALPHA BETA (GAMMA) DELTA IPROCEDUREI

ALGOL The Lower Incre- Upper
4ord Control- Limit menting Limit

ling of or of
Word Loop Decre- Loop
or menting

Loop Steps
Parameter

The ALGOL word FOR in the loop control is optional and

is used only for added readability. It is actually ignored

by the compiler.

NW29, p. 52



t NAREC REFERENCE #29,p.53

2. ALPHA is the controlling word of the loop control. It

is conventionally an index register though a fixed point

full word variable may be used just as efficiently. Note

that the value of ALPHA may be used as a subscript within

the procedure.

3. BETA contains, or indicates, the first value of the con-

trolling word. It may be a fixed point integer, a fixed

point variable name, another index register, or any one of

these i another, ad infinitum; i.e., BETA consists of a

theoretically unlimited string of sums and differences of

unsigned, unsubscripted, and unbithandled fixed point

variables and unsigned integer constants.

4. GAMMA, the incrementing or decrementing steps to be

taken, may be a fixed point integer or a fixed point unsub-

scripted, unbithandled variable containing a positive inte-

ger; the latter may be accompanied by a negative sign (see

Note below).

Note: The full meaning of item 4 above should be clarified.

It is legal to decrement in the following manner.

FOR I = A(-1) 0

using the explicit value of -1. However, it is illegal for
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GAMMA to be a variable that contains an integer equal to
or less than zero, Hence, if the value in DEC is _i,
then:

FOR I = A(DEC)O

is illegal. On the other hand, if DEC were to contain +1,
then the following is legal:

FOR I = A(-DEC) 0.

5. DELTA, the last limit of the loop, may take any of the

forms of BETA.

6. The procedure itself may be any legal set of statements

ordinarily used within the program logic, including return

jumps to subroutines, comparisons, additional loops with

different loop parameters, etc.

From these rules, we can see that all of the following

formats of loop control are legal.

J = A+B (-1) 0 1
,K = I (5) COUNT)
IM = NUMBER + 10 (-2) K + 1 I
,NOUN = 5 (NN) FINISH -1
, I = I (1) END I I

The number of loops executed will never continue beyond the

limit of DELTA. A simple example will ;erve to illustrate

this point.

FOR I= 0 (2) 5 I

NR#29, p.54



( NAREC REFERENCE #29,P.55

Obviously, the count will never hit 5; one might expect the

loop to continue indefinitely. However, this is not the

case. The loop will be executed, and whenever incrementa-

tion by 2 will cause the count to be greater than 5, the

loop control will be terminated. Thus, the preceding loop

will be executed three times; i.e,, for I = 0, 2, and 4.

After the completion of any loop, a normal exit will occur

and the next sequence of instructions will be executed.

Similarly, if the loop control is being decremented, the

program will never be operated for a count less than DELTA.

In NELIAC, considering the general loop control state-

ment given in this chapter, the loop increment GAMMA and the

upper limit DELTA are variable; i.e., if either or both are

altered by the procedure within the loop braces, the new

value(s) of the loop increment and/or upper limit will be

used until altered again. The same condition exists with

respect to the loop parameter ALPHA; 1.e., it is this

altered value of ALPHA which will be used throughout the

remainder of this repetition of the loop and which, further-

more, will be incremented or decremented at the end of the

repetition. Finally, although alteration of the lower limit

BETA by the procedure within the loop braces will not affect
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the further repetitions of the procedure during this execu-

tion of the loop control statement, if, at a later time,

control is again transferred to the loop control state-

ment, the new value of BETA will be the value then con-

sidered as the lower limit of the loop parameter (assuming

BETA has not been changed again elsewhere in the program).

The value of the loop parameter ALPHA upon exiting

from the loop is its value during the last execution of the

procedure within the loop braces (assuming the procedure

does not alter it).

Let us rewrite the program logic of the previous

example to compute the sum of the squares of fifty values

of X0 to X49p assuming that the number of variables in

table X has been defined in the dimensioning statement

NR VALUES = 50, as:

Thus, that portion of the program to compute sum squares

might read:

COMPUTE SUM SQUARES:
0 - SUMSQ, FOR K = 0 (1) NR VALUES - I

X [K] * x [K] + SUMSQ SUMSQ
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VIII. FUNCTIONb

In loop control, the method of indexing tables of

values for computation in similar operations was illustrated.

Other instances, however, may call for an operation to be

performed several times with different parameters but at

individual points in the program; e.g., a common routine

to compute square roots may be necessary. In cases such as

this, the NELIAC function notation may be used. This

functional notation enables the programmer to execute a

particular procedure with any desired input parameters

necessary to determine the value(s) of the function with

the result(s) being placed into any desired output para-

meter(s), Though the function is defined but once, it may

be executed at any point of the program logic (except with-

in itself, of course). With the exception of its parameters,

a function is written and executed in a manner similar

to a subroutine.

An example of the format of the functional definition

is:

PROCEDURE X (W. Y. Z.):

W * W - Y * W . Z I
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The function name is any unique name followed by its

associated dummy parameters enclosed within parentheses,

As with a subroutine, a colon precedes the computational

logic which must be enclosed within braces, This compu-

tational logic may contain all computational procedures

which are valid in the main program except (1) subroutine

and function definitions and (2) calls for itself though

calls for any other subroutine or function are valid.

A function, written in proper notation, must indicate

the mode of both input and output parameters although the

distinction between input and output parameters need not be

indicated here. In fact, in the function definition this

distinction can be indicated to the reader only, not the

compiler, since the distinction is actually made only in

function calls. The arguments within the parentheses

serve the same purpose,.as the dimensioning statement of a

program (or flowchart); thus, anything legal within a

dimensioning statement (except absolute addressing, see

the chapter ADDRESSES OF NAMES) is legal within the

parentheses. As usual, a comma after fixed point variables

suffices, and here too it is also legal to define floating

point variables with a period only. The variables (with-

in the parentheses) in a function d.efiJni are merely
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dummy names and, therefore, names local to the function sub-

program; thus, the same names may be used elsewhere in the

program without harm, although this is usually inadvisable

since it complicates debugging, understanding, and alter-

ing the program. The instructions within the braces are

equivalent to the program logic. In fact, the function may

be considered as a miniature flowchart accessible only

through its name.

Again, as with a subroutine definition, the function

definition does not cause computation to take place. Exe-

cution occurs when the function is called within the pro-

gram logic by writing the function name and specifying the

actual arguments (parameters) to be used. It is here, and

here alone, that the compiler is told which parameters are

to be treated as input and which as output, Note the

following example which executes (i.e., calls) the function,

PROCEDURE X, previously illustrated.

, PROCEDURE X (ARG; ANSWER, ANSWER (1] ),

The parameters supplied must agree exactly in mode, order,

and number as anticipated by the function definition.

Commas separate the parameters since indication as to mode

is unnecessary (in fact, meaningless) in the calling of a
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function; the manner in which these variables are treated

is completely determined in the function definition. A

semicolon separates the input arguments from the variables

specified for the output of the 'unction. In this case,

the comma normally used after a parameter must be replaced

by the semicolon since its usage here in addition to the

semicolon would not be redundant but would have special

meaning as will be seen later.

The arguments thus supplied as input parameters are

substituted for the corresponding dummy variables in the

definition, the values of the function are computed, and

the values of the dummy variables in the definition are

inserted into the corresponding arguments supplied as out-

put parameters. As a result of the above call for

PROCEDURE X, ANSWER will be expected to contain the value

of ARG squared, ANSWER (1] the value of ANG cubed.

As an illustration of legal parameters which may be

used in a function call, note the following example:

FUNCTION Y (A, B(I], C[(4; D[K+2], E(F-#300] (16-.19)),
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The bit notation used in the last parameter will be described

in a later chapter. An example of the definition of dummy

variables which may be used when writing a function follows:

XFNCT (X = 0*0, Y(25), D. A = BIS. C: D: JE(24,-31), F(24447)i,

G = '7.578):
JProgram Logicj

The unfamiliar forms of dimensioning will be described in

later chapters.

As has been stated, functions are merely sub-programs

in which the variables within the parentheses are equiva-

lent to the dimensioning statement and the program logic is

contained within the braces, There is no limit to the

number of input parameters which may be entered in a function

definition nor is there a limit to the number of output

values which may be computed. However, every function must

have at least one input parameter though it need have no

output parameters. Functions, just as subroutines, should

be defined at the end of a program or its flowcharts, or

necessary jumps should be made over the function segments

of the program. In the following section, we shall learn

a method whereby functions and subroutines may be written
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as separate flowcharts, virtually independent of the main

program,

In a function call, the most general forms of the

input parameter are (1) the unsigned general subscripted,

bit-handled noun and (2) any unsigned legal form of a

constant in program logic. The most general form of the

output parameter is form (1) of the input parameter.

The one basic concept which must be grasped in

functional notation is that the correspondence between the

arguments used as parameters in a function call and the

formal parameters dimensioned in the function definition

is solely on the basis of their respective ordering starting

with the first parameter in each case. If a parameter is

defined in a function definition and it is desired not to

utilize this parameter in a particular function call, this

fact must be indicated to the compiler by leaving a blank

space between the comas (one of which may be a semicolon

instead of a comma) where the argument corresponding to this

formal parameter would normally be placed (unless no further

parameters in the ordering are to be utilized), Suppose a

function is defined as follows

, FUNCTION (U, V. W. X. Y. Z): I Program Logic j,
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Then, the function call

FUNCTION ('7, 6.341, A [J-4]; B, C(D], E(2]),

will result in the input parameters 7, 6.341s and A[J-4]

being placed into the formal parameters U, V. and W,

respectively, before execution of the procedure defined

as FUNCTION, and the formal parameters X, Y, and Z being

placed into B, C[D], and E(2]. respectively, after execu-

tion of the function. However, if it is desired to call

the function leaving the formal parameters U and W un-

changed and only securing, as output, the value of the

formal parameter Y, the function call may be written as

. FUNCTION (2 1.0*6, ; 0 F),

Comparing this function call to the function definition,

the reader will easily see, solely on a basis of ordering,

that the parameter U will be unchanged, a floating point

one million (1 .0*6) will be placed in parameter V. param-

eter W will be unchanged, the procedure defined as

FUNCTION will be executed for these values of U, Vs and

W, then the value calculated and placed in X will be ig-

nored, the value calculated and placed in Y will be placed

in F for use in the main program, an4t the values calculated

and placed in the remaining parameters; namely, Z, will be
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IX. PROGRAM STRUCTURE

So far, NELIAC programs have been described in terms

of a single load number, dimensioning statement, semi-

colon, program logic, and double period. Actually,

complex programs often consist of several such sub-pro-

grams, called flowcharts. Each separate flowchart must

follow this format headed by leader and followed by leader:

'Leader)
5
DIMENS IONING STATEMENT

PROGRAM LOGIC

(Leader)

One or several flowcharts (with a maximum of 63)

preceded by a preface and followed by an endink comprise a

program. The preface consists of:

(Leader)
5
(Optional comments)
Program or Programmer's Name,
Object Program First Address, Bias
(Leader)

Either or both the Object Program First Address and the

Bias may be left blank in which case standard addresses will

be used for the blanks. The ending consists of:

(Leader)
5o.
(Leader)
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A NELIAC program tape consisting of 4 flowcharts may

be represented schematically as (without any attempt at

relative scaling):

PREFACE

FLOWCHART I

FLOWCHART 2

FLOWCHART 3

FLOWCHART 4

END ING
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Obviously, the ability to write programs as separate

flowcharts allows one to eliminate the necessity of having

to bypass subroutines and functions within the main program

logic. However, an even more important reason for this

structure is to permit the na vurse feature which is

described in the next paragraph. As shall be seen, this

feature provides a solution to many of the problems en-

countered when several programmers are engaged in writing

different parts of the same lengthy program.

Suppose, e.g., a programmer wishes to use a subroutine

which already has been written by someone else at some other

time. Obviously, a problem may arise in duplication of

names, as the programmer must avoid using any names already

defined in the subroutine. In NELIAC, this problem is

greatly diminished, since the writer of the subroutine can

jw= z nama that have no significance outside the flowchart

containing the subroutine. Names thus purged may be used

for other purposes in the remaining flowcharts. For

example, a square root subroutine would have virtually all

names purged. The only names not purged would be the ones

necessary to communicate with the main program in a separate

flowchart. In fact, the use of functional notation, rather
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than subroutine notation, completely eliminates the need

for even these names,

Purging is accomplished by inserting an absolute sign

I anywhere within the name as it is being defined (but not

inserted when the name is used) although, conventionally,

it is placed after the first character of the name.

Purged names within the Dimensioning Statement:

IINDEX 6,

X=0 *0,

Purged names within the program logic:

, OCjNT A -) B,
C ILEAR 10 -+ I -+ J -> KI

To reiterate, these names, known as taaz or local

names, will have meaning only in the flowchart where the

above definitions occur.

Now that it is possible for a program to consist of

more than one flowchart, it also becomes possible for a

dimensioning statement to follow part of the program logic

of the program. This possibility necessitates the follow-

ing programming rule:
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Each floating-point, partial-word, and 10 format
and 10 subscript variable must be defined in a
dimensioning statement (or function definition)
before it is used in any program logic.

Partial words and 1O are discussed in later chapters.

This rule is necessary because the NELIAC compiler must

distinguish between the two number formats, floating point

and fixed point, when making up instructions pertaining to

a variable in the program logic. Corresponding necessities

arises in the case of dimensioned partial words and in the

case of format and subscript words referred to in 10

statements.

For example, suppose a programmer wishes to write his

main program as the first flowchart, and include a random

number generator subroutine (called RAND) as the second

flowchart. The pattern is illustrated below:
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(Leader)
5

D.S. 1 DIMENSIONING STATEMENT FOR MAIN PROGRAM

MAIN PROGRAM LOGIC

(Leader)
5

D.S. 2 DIMENSIONING STATEMENT FOR THE RANDOM
NUMBER GENERATOR SUBROUTINE

RAND: JPROGRAM LOGIC FOR RNG SUBROUTINEI

(Leader)

Suppose the random number generator stores its random

number in floating point in location X just before exiting.

Since the main program is going to use X, X itself must be

defined as a floating point variable in D,S. 1, It would

be illegal to define X as floating point in D.S• 2 because

in that case the main program would be compiled before the

compiler was able to sense that X was to be floating point.

Of course, the way to get around this problem is to write

RAND as a function, defining the output with a dummy out-

put floating point name as follows:

(Leader)
5
DIMENSIONING STATEMENT FOR RNG SUBROUTINE

RAND (Y; DUMY.):I(generate a random number) - DUMY I

(Leader)
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Then with the above RAND function as the second flow-

chart the following call in the main program logic will

generate a random number in location X (where X must be

defined as floating point in D.S. 1.)j:

RAND (;X),

The dummy input parameter Y is used simply because every

function must have at least one input parameter.

Appendix D is the current version of the NELIAC-N

Coding Sheet used by the programmer for writing NELIAC

programs for the NAREC.

Appendix E is the current version of the NELIAC-N

Operator Instruction Sheet filled out by the programmer and

transmitted to the NAREC operating staff for compilation

(and possible run) of his NELIAC program on the NAREC.
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COMPUTER SPACE LIMITATIONS

Although the NELIAC language itself places no limita-

tions on such features as number and size of flowcharts,

number of names, number of undefined calls, length of

object program, etc., the version of the language imple-

mented for a particular computer must, of course, be

limited by the space limitations of that computer's memory.

Most of the limitations such as names being uniquely

defined in their first 16 character, the limitations on

nested comparisons and strings of Boolean or and Boolean

and statements, etc., which have already been described are

due to hardware limitations rather than NELIAC language

limitations. In addition, the NAREC imposes limitations on

the overall characteristics of NELIAC-N just as every com-

puter does to the version of NELIAC implemented on it.

NELIAC-N allows the compilation of up to 63 flowcharts

in a single sweep. However, there is an 10 Package and a

Library Package which are compiled individually as

separate flowcharts at the end of the programs requiring

them. Since eithr or both of these flowcharts may be

added to a program, the programmer's flowcharts may actually

be limited to 61 or 62. Thse two package flowcharts will
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be discussed in greater detail in the chapters devoted to

them. The fixed point, floating point, and subscript

packages are each compiled individually at the end of the

first flowchart requiring the particular package but as

parts of those flowcharts. Thus, they impose no such

limitation on the source program.

Immediately upon readin, the NELIAC-N flowchart is

converted to a symbol string containing, in order, the

NELIAC characters of the flowchart converted to an internal

code in which there is a one-to-one correspondence between

the NELIAC Characters of the flowchart and the symbols of

the symbol string. In this symbol string, all spaces

external to names and numbers have been removed, successive

spaces within names and-numbers have been reduced to single

spaces, and all ALGOL words have been eliminated, but

comments have been retained. Mhe storage area allocated

to this symbol string limits the length of the flowchart

when reduced to its symbol string to 5600 ch2racters at the

present time. This normally allows from 5 - • flowchart

pages depending upon tho character density of the pages.
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In the event that this limitation is exceeded, the com-

puter will stop with a Flowchart Area Overflow fault

printout. However from many other standpoints - under-

standing, debugging, correcting, changing, combining,

etc., of flowcharts, it is advisable to write flowcharts

of individual length far below this overall limitation.

The NELIAC-N compiler contains a list of 512 entries

in which all names, constants and masks used in logic and

10 statement entries are recorded. Temporary names are

recorded in the list but are purged from the list at the

end of their flowchart thus making their space available

for reuse. Since, to date, no program including the com-

piler itself, has ever overflowed this list, it is con-

sidered more than adequate for any foreseeable program.

If the list is overflowed, a Name List Overflow fault

printout will result.

The NELIAC-N compiler contains a list of 300 locations

for recording the names, constants, and masks as yet unde-

fined. Since each location can record two entries for the

same name, number, or mask, 300-600 undefined calls are
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permitted at any one time. Whenever a name, number, or

mask is defined, all undefined calls for it are filled

in the object program and purged from this list thus

making available this space for reuse, Since constants

and masks are defined at the end of the flowcharts where

they are first used, they will be undefined throughout

the first flowchart where used but defined throughout

the remainder of the program. Since subscripting by name,

fixed point multiplication and division, and floating

point addition, subtraction, multiplication, and division

are performed through return jumps to subroutines in

packages compiled at the end of the flowcharts where

first reauired, these operations will set up undefined

calls in the first flowcharts where these operations are

used. Hence, this procedure provides another reason for

writing NELIAC programs in relatively short flowcharts.

In the event that this list is overflowed, an Undefined

Name Overflow fault printout will occur.

Finally, since the compiler itself, at the prescnt

time, occupies memory locations #0000 to #26FF in the

NAREC, this leaves the area #2700 to #3FFF available for
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storage of the resulting object program as the NELIAC

program is being compiled. Hence, normal compilation allows

for object program up to #1900 or 6400 locations. How-

ever,"reset the bias" and "low standard bias" features

allow the compilation of larger programs (such as the

compiler itself which occupies 9984 locations) in a single

sweep. In addition, by suitable use of absolute addressing,

a program may be compiled in two or more sweeps. If the

resulting object program ever exceeds the area available

for its storage, the NAREC will stop with a #4000 42 in the

control register.
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X. PARTIAL LOCATION OPERANDS (BIT HANDLING)

Up to this section all storage variables have been

discussed in terms of a full 48 bit word or memory location

per variable, In this section we shall see that any con-

tinuous portion of a memory location (i~e., only selected

bits) can be defined as a fixed point integer variable,

and that in the program logic, any continuous portion of a

variable can be manipulated quite easily without disturbing

the rest of the bits* of the memory location to which the

variable is defined,

*NOTE: Conventionally, the term bit is the name given to

each of the 48 flip-flops which, together comprise a NAREC

memory location. This name is derived from Binary..•jigit

because it can contain either of the values 0 or 1,
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It will be convenient to use the following bit number

assignments:

any 48 bit 47 46 . . 0 1.. 1 0 bit number
memory __
location

most least
-- significant significant 4

bits bits

PART VARIABLE OPERANDS

The reader is already familiar with the procedure for

defining a full 48 bit fixed point integer variable

(CIapter II). If the programmer wishes to manipulate only

selected bits of such a variable he specifies the name of

the variable, and indicates which group of bits of that

variable he wishes to treat as a positive fixed point

integer* by writing the first (lowest bit number) and last

(highest) bit number using parentheses and the right arrow

as illustrated:

A (0 -• 14)

*The integer is necessarily positive only when referring to

44 bits or less.
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In this example only bits 0 through 14 of the variable

A are referenced. To call for a single bit, say the least

significant, or bit zero, one would write:

A (0 -1 0)

If the variable is part of a table of variables and

requires a subscript for its reference, the subscript

notation (the brackets) is written first; ioe.,

A (I] (6 -> 32)

It should be noted that the values of part variable

operands of less than 45 bits are treated as positive fixed

point integers whereas full 48 bit variables may contain

either positive or negative integers. In the case of part

words of 45 to 48 bits, whether the part word is con-

sidered positive or negative depends on the setting of the

sign bit - bit 44 in the NAREC - after the part word is

downshifted so it begins at bit 0. For example, supposed

variable A contains the following array of bits:

"47 7 6 5 4 3 2 1 0

A, 0 0 .....0.. .0 1 o 1 0o 011
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One immediately recognizes this as the integer +6b (hexa-

decimal) or +107 (decimal). However, the 4 bit operand

A(2-05) which contains the binary array 1010 is considered

to contain the number a (hexadecimal) or 10 (decimal).

In other words, if one were to write the following

program (assuming A is defined as above):

,A (2-o5) - #a: I + 1 -- I;; STOP.

the result would be that the program would add 1 to I. Of

course, an equivalent statement would be:

,A (2-5) = 10 : I + 1 -) I;; STOP.

from which the compiler would generate the same program.

It is worth reiterating that even though the uppermost bit

of A(2->5) (bit 5 of variable A) is a 1 the partial operand

is not considered to be a negative integer. The only

possibility of the partial operand being considered a

negative integer in NELIAC-N is if it contains more than

44 bits.

All arithmetic operations previously described for

fixed point operands are legal with part variable operands.

However, the responsibility of arranging adequate storage
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capability is left to the programmer. For example:

Legally, the programmer may write:

,TABLE[1](19-*25) * A(3-o6) -- Z(I-*),

However, the programmer should realize that a 7 bit operand

times a 4 bit operand m M require as many as 11 bits to

store the answer. In the above case, only the lower 5 bits

of the answer would be stored into Z(1-i5), and the upper 6

bits would be lost.

The index registers, I, J, K, L, M and N, automatically

dimensioned by the compiler may be bit-handled exactly the

same as any noun dimensioned in a dimensioning statement.

Thus:

1 " T (13 "4 18),

,Z (41 "* 46) "• K,

,M (5 " 10)/2 * L (24 -* 31),

NP#29, p. 8 0
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Further operations with part variable operands are

illustrated below:

sA(25-".34) "+ B,
,A(39-"047) + B(0-'14) -1 C,
,A(12-*24) < B(2+14) : TRUE ; FALSE ;
,A[I](30-.36) - B[J](31-*35) -C[K](O-44)q
OA(44-*44) = 0: TRUE ; FALSE ;

PART LOCATION VARIABLES

The above discussion shows how any portion of a

variable may be manipulated without disturbing the rest of

the bits of the variable. It is possible, and often much

more convenient, to define a variable as certain bits of

another variable. Since they reference only part of a 48

bit memory location, they are called PART LOCATION VARIABLES,

and are considered to be variables, themselves. Part loca-

tion variables are always defined as certain bits of a

variable which itself is defined as an ordinary full loca-

tion variable (although this variable need not be explicitly

named and dimensioned). For example, if X is to be bits 39

to 47 of variable A, one would define this in the dimension-

ing statement, along with the definition of A, as follows:

A: I X(39 ") 47) I,
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In the program logic which follows, the operands A(39-,447)

and X would be indistinguishable, and all the rules for

part variable operands described in the previous section

would apply to the part location variable X. Obviously,

the main advantage in using part location variables is to

pack a number of variables whose rangesaf values are small

into the same memory location. An illustration of a

typical use of a table of packed part location variables

follows:

Suppose we wish to store data on 100 aircraft. Items

we wish to store are:

X coordinate (",5 bits)
Y coordinvte (C5 bits)
height in 1000 ft. units ý6 bits)
status (3 bits)
identity (3 bits)
track number (6 bits)

This data can be packed into 100 4&-bit words of NAREC

memory as foliows: In the dimensioning statement one woula

write:

AIRCRAFT: <X(O-*-4), Y( 5-*'29),
HT(30435), NTAT(36--38). ID(39-*L4),
TN(4Q•-q'7) ! 00).
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Note that the initial value of all of these variables

is zero. So far, there is no convenient way to set all part

location variables to desired initial values since only

entire words may be assigned non-zero initial values.

Hence, in order to dimension initial values for this table,

X, Y, ET, STAT, ID, and TN would have to be combined into

the full word AIRCRAFT for each entry in the table. Then,

of course, the initial values will be assigned in the normal

manner for tables. An alternate solution would be to use

constants in the first part of the program logic; i.e.,

3052-.X[0], 20 425-*Y[0], etc...

Note also that each of the part location entries in

the table AIRCRAFT: X, Y, HT, STAT, ID, and TN, are tables

of 100 variables. Thus to reference the X coordinate of

the 10th aircraft one would write X[9] (or equivalently

AIRCRAFT (9](0414)).

Before leaving this example, it is well to illustrate

a technique that often makes the program logic easier to

read. Suppose the programmer wishes to distinguish be-

tween 4 identities, FRIENDLY, HOSTILE, FAKER, UNKNOWN.

The programmer might arbitrarily assign values 0, 1, 2,
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and 3, for these 4 identities respectively, and then in the

program logic, if the program wishes to find out if a

certain track has identity of FRIENDLY, the program might

read:

,ID(I] = 0: YES. NO.

However, a preferred method Is to define variables

FRIENDLY = 0, HOSTILE = 1, etc., in the dimensioning

statement and then the same program could read:

,ID(I] = FRIENDLY : YES. NO.

Of course, not all bits of a full 48 bit variable need be

dimensioned, and several names may be given to the same

bits of a full variable. Part location variables of the

same full variable may overlap each other:

B: I C(0-+12), D(0-'12), E(12-.29),F(l 2-)47) 1 ,

Furthermore, the entire word need not be named and defined:

IC(0-!2), D(O--*1N2), E(12->29), F(12-p.47)e
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XI. OUTPUT STATEMENTS

The NELIAC-N compiler converts NELIAC output statements

into print programs that are compatible with the on-line

printer system or with the off-line NELIAC-N Flexowriter

(through the output punch).

In general, each NELIAC output statement controls the

printing of a single line of print of up to 72 characters

for the line printer or 86, 116, or 160 for the flexo-

writers. Output statements are also used to specify line

spacing, paging, and termination of output.

Two types of printed output control are required by

the programmer: first, he must have the ability to specify

the fomat of the data he desires to have printed, and

second, he must have a method of printing liteal i.e.,

any words or symbols verbatim to serve as headings, labels,

or lines of text.

The information a programmer must supply pertaining

to his printed data consists, first, of specifications about

the data itself:
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1. Which variables are involved and in what order are they

to be printed?

2. Are the numbers to be printed fixed point or floating

point variables, and, if fixed point, should they be

printed in hexadecimal or decimal notationt

3. How many digits to the right of the decimal point are

required for floating point variables%

Secondly, indication as to the arrangement of such

data upon the printed page must be made:

1. How many spaces are needed between each piece of data

on a single line?

2. Are blank lines needed%

3. Are new pages neededl

4. When is the output terminatedi
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PRINT VARIABLES

The term prXint variable will be used here to mean a

variable whose value is to be printed through the use of

an output statement. Only full 48 bit variables can be

used as print variables. The basic format of an output

statement as it is written within the program logic will

now be examined. In this section, only the control of print

variables; i.e., data printout, will be considered.

The essential elements of a print statement are a

comma and a left brace, the names of the print variables

enclosed by the less than, greater than signs, and the

right brace indicating the completion of the statement.

Such an output statement will print one line only. Con-

sider the example below in which the two variables, refer-

enced by name as DATAM and DATA2, are printed on a single

line.

S IPRINT < DATAM I DATA2 >

The word PRINT is merely a mnemonic device which may be

omitted. In fact, any words may be inserted here without
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harm although it is not customary to insert anything.

Spaces between data words are indicated by the absolute

sign Is the Boolean or sign j, and the Boolean and sign n.

The absolute sign indicates one space; the OR sign indi-

cates five spaces; the AND sign indicates no spaces.

Thus, three spaces are indicated by III and eleven spaces

may be indicated by a combination of the two symbols

UjI, 1 Uj, or U I U. A Boolean and sign n is necessary if

no spacing is required between print variables.

We see that the output statement serves only to

indicate the print variables, the spacing between printed

values, and, by its position in the program logic, when

the line is to be printed. All other control over the

printed message is indicated by the programmer in the

dimensioning statement. Thus, for each print variable

the programmer must indicate in the dimensioning statement

the desired printed number format (scientific or fixed

point), the number system to be used (hexadecimal or

decimal), and the number of digits to be printed, (which

also controls the total number of print spaces used every

time the variable is printed).
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The number of digits to be printed is the same as the

number of digits in the initial value (with the exception

of certain conventions); i.e.,

A = 50,

would specify two printed digits. The number of spaces

required would be three, iowever, as a space is always

reserved for the sign of all print variables except for a

full 12 digit hexadecimal word.

B = #00,

specifies a printing of the sign, the hexi sign, and the

least two significant hexadecimal digits (after comple-

mentation if the word is negative) thus requiring four

print spaces. The sign of a value is actually printed only

if the value is negative.

Floating point print variables require an additional

space for a decimal point, and, in scientific (true float-

ing point) format, five additional spaces for an exponent.
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Floating point print variables can be printed in either

scientific or true decimal point format. Scientific format

is always printed with a fraction part, X, where 1/10 4 X < 1,

and a signed power of 10 expressed as a plus or minus

integer in three digits. To indicate scientific format in

the dimensioning statement, an initial value is written

without a decimal point. For example, if A is defined as:

A = 0000 * O,

then if the floating point number 23.14 were stored in A

and printed, the resulting output would read as:

.2314 -002

and thus would use a total of 11 spaces on the printed

output page.

True decimal point format for floating point variables

is always printed with an appropriately placed decimal

point. Thus if B is defined a.:

B - 0000. * O,

then if B contains a floating point value of 269,733, the
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printed result would read as:

270.

In all cases the decimal point is printed.

All values printed from a table of variables will be

printed with the same format control. This control will be

determined by the last specified initial value of the table;

e.g., a table may be defined in the dimensioning statement

as:

A(3) = 295, 23, 4.8,

Since the last value in this table is 48, only two digits

have been specified for any print variable in the entire

table. Any output statement calling for the printing of

variable A (the first value of the table in this example,

295) will print only asterisks since the value of A is too

large for the dimensioned format of A. Hence, if the

program logic were to read:

, <A>I ,

the printed result would be:
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It is good practice to format a variable larger than

the greatest expected value to allow for any miscalcula-

tion. Neither fixed point print variables nor floating

point print variables, when larger than the specified

format, will be printed. A row of asterisks ig printed

instead of the number.

As another example, if a table is already defined in

the dimensioning statement as:

P MATRIX (9) = 13.21 * 0, 2.32 * 0, 1.00 * 0,
,-0o98 * 0, 0.75 * O,

,00.34 * 0,

and if it is desired to print this table as it stands,

two zeroes should precede the decimal point of the last

value (00.34 *'0) to enable the printout of the first

values (13.21 * 0). The table may then be printed in the

following manner:

FOR J = 0(3)6 I, < PIATRIX (J] |
PMATRIX [J+1] I PRATRIX [J+2] >1 I

As an example, let us suppose a table has been for-

matted in the following manner:

TABLE (4) = 0000.00 *0,
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and floating point variables are computed and stored into

this formatted table. Output statements may be enclosed

in loop control statements so that an instruction in the

program logic may read:

FOR I = 0(1)3 1,) < TABLE (I] >

The table, printed out, may appear as:

2.01
-14.32
-3.75

The value of the last variable wax too large for the

allotted format; i.e., over the value 9999.99 after round-

off, therefore, the asterisks,.

More than one line of print may be specified. The

following example' illustrates an output statement

indicating three lines of print, two variables per line.

<I AIB > < CID > < RIF > 1,.

NW R 4 .9. ,
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On the next page, the foregoing discussion is

illustrated by indicating sasmple dimensioning statements,

the number contained in each print variable when the

output statements were operated, and the resulting NELIAC

printouts.
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LITERALS

It is often necessary to print headings, labels, and

lines of text along with program results. The printing of

such literals is much the same as the printing of computed

variables except that any information enclosed within

dobl less than, greater than signs is printed verbatim.

Example of literals:

,I<< THIS I IS I A I LINE I OF I TEXT >> i,

All NELIAC-N characters except the absolute sign, the

Boolean or, the Boolean and, and the greater than sign can

be printed literally. Notice that the absolul sign I and

gr sign U are again the necessary symbols used to indicate

any spacing between words. Of course, text and variables

may be intermingled within a line of print as long as care

is taken to enclose the text material within the necessary

double signs, Consider the following example:

,< MAXIMUM I VALUE I IS I
EQUAL I TO > I MAXG > is
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The variable is MAXG and is, therefore, not enclosed

by the double print symbols while the literals MAXIMUM

VALUE IS EQUAL TO are surrounded by the double signs.

Now suppose the variable must appear somewhere in the

middle of a line of text. The following format is

necessary:

, <<uSINGI >Z< IMINESIANDI> X < IMINESWEEPERS>>»,

Z and X are the variables and are distinguished from the

literals by breaking the sense of the double print symbols.

Provisions are made to indicate the beginning of new

pages, blank lines, and completion of output. These are

indicated by the use of the following punctuation within a

print statement but external to either single (< >) or

double quotes (<< >>).

Start new page.
, Insert blank line.

End of file.

A statement simply to Carriage Return and Top of Form

(at the present time, 8 additional CR's) would be:
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Commas indicate blank lines. A statement of four

blank lines is written as:

j I <>, ,, I,

In the following statement:

,I<<PROBLEM I NR >IX >,,.,

the literals PROBLEM NR and the variable X are printed

followed by two blank lines. After all results are print-

ed (actually at any time outside quotes), an end of file

(ignored in line printer code, a stop code in punch or

flexowriter code) may be indicated.

A single line of print for line printer output should

never exceed 72 characters.

It must be remembered that the double period (..) is

reserved to indicate the end of the flowchart; and may

only be used for that purpose. Hence, it is impossible to

place successive periods within literals since they will

signify the end of the flowchart to the compiler. How-

ever, successive periods may be printed literally by

inserting ALGOL words between them. The ALGOL words will
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prevent the compiler from detecting a double period signi-

fying the end of the flowchart, but they will be removed

from the 10 statement leaving only the successive periods

before the 10 statement is compiled.

COMPLETE OMTPTFr STATEMENTS

Although the three distinct modes of outputting -

page formatting, data printout, and literals - have been

discussed separately, the ability to nix them freely in

output statements Is necessary before the programer can

print out exactly what he wants to print out. For this

purpose, it is necessary not only to understand the details

of each Individual type of output but to have an overall

picture of their usage.

In general, an output statementp in the program logic

is enclosed by braces with the left orace being preceded by

a coma; namely,

P 1 10 STATEKENTU

It is necessary to think of the existence of three levels

within the output statement, these three levels corresponding

to the three nodes of outputting discussed above. For
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convenience, these three modes are called levels 0, 1,

and 2, corresponding to page formatting, data printout, and

literals, respectively, Entrance to an output statement

through the ,I is always at level 0. Within the output

statement each < raises the level by 1 while each >

lowers the level by 1, subject to the proviso that the

level can never fall below 0 nor rise above 2. Exit from

the output statement must be at level 0. Hence, in a

typical output statement, the levels would vary as shown:

SI .... <<.... > 0000 < 0.00 > *see > < 0006 < .000 >>.0000

0 2 1 2 1 0 1 2 0

It is immediately apparent that page formatting occurs at

level 0, data printout at level 1, and literals at level 2,

with the appropriate rules as given on the preceding pages

applying at each level.

In order to properly arrange his output lines on the

page, the programer need only keep in mind one simple rule:

Within the output statement, each time the level in

Increased from 0, a new line of printout is started, all

oscillations between levels 1 and 2 merely change the type

of printout on this line, and when the level is decreased
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again to level 0 this line, followed by a carriage return,

will be printed. Hence, the above example calls for two

lines of printout.

The programmer who has a thorough knowledge of the

language used within the three modes of output, should be

able to output whatever he desires by simple application

of the above rule.

10 PACKAGE

NELIAC-N output is printed through return jumps to the

subroutines PRINTOUT, TOP OF FOE, DOWNLINE, and END OF

FILE contained in the LiBRARY PACKAGE which is automatic-

ally compiled as a separate flowchart at the end of any

program which has one or more output statements. Hence,

these five names should not be used by the programmer.

This chapter is ended with a sample program and re-

sulting printed output in order to illustrate the rules

covering output statements discussed in this chapter. The

reader will observe that the result of this program was

used to generate the full-page output statement illustra-

tion ending the section on Print Variables.
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5

OUuTIM EXAMIPLE,,,..

5

A 0 0, B - 00, C - 00000, E - #0, F - #00000, 0-

A. - 0.00, BB - 0.00, CC - 000.0000, GG - 25*2,

HR = 23104-2, 11 = 000, JJ - 0000000;

START: ,I<>; << FIXED I POINT >>,I FIVE BLANK LINES,

492 * A, PRINT 1, 32765 -0 A, PRINT 1, -30 4o A, PRINT I,

BLANK LINE, BLANK LINE,

I<< FLOATING I POINT >>, << u TRUE I DECIMAL I POINT >>,I

FIVE BLANK LINES, 1.0 -* AA, PRINT 2,

(CM•OENTS: WHAT IS WRONG WITH THE STATEMENT:

1 AA, PRINT 2, )

-1.0 * AA, PRINT 2, 371.21 -o AA, PRINT 2,

-371.21 -* AA, PRINT 2, BLANK LINE, BLANK LINE,

I<< U SCIENTIIFIC I NOTATIO• >,j FIVE BLANK LINES,

l<11 OGull HH>,I 1.0. 0G, PRINT 3, -1.0+00, PRINT 3,

371.21 - OG, PRINT 3, -371.21 GOG, PRINT 3, STOP.

PRINT 1: JA.-oBD-C -ZEoF-oG,

1<11 Au I aj il II RU llIi Full 0>11

PRINT -2: 1 LA -o- BB -CC I < U ', II AB M II CC > II

BLANK IN: I,1<>II

FIVE BLANK LINES: FOR I = - (1) 5 IBLANK LINE• I

PRINT 3: IGG -* HH II " JJ,

I < IGGu lI HHu II Ull JJ>l1
STOP: ,I <>; .1..

5..
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XII. ADDRESSES OF NAMES

At times, it is convenient for a variable to have as

irs initial v:,iue the address (ioc..tion) of another

v.riz.ble (or, in general, the ddress of any name). This

is handled in the dimensioning itatement by following the

nzme of the vzriable being deoined with un e"uals sign and

",' set of braces enclosing the name of the variable whose

address is to be the sta.,-ting vailue, ZOf course, the

vtaria.bic (or namo) whose name is enclosed by the braces must

be defined elsewhere in the dimensioning statement or

Srogram°

Example: To define the varizable ADirC ;nd give to it

.-s its initi-.1 v.: luc the :.ddress of the n=re C. the aimen-

sioning statement must contzin:

hLopC C i ,

A tzble of cddrcsses miy zlso be defined in the

dimensioning sttemont, for example:

J TABLE 1', R, S I,

N•lr-9. p. 0
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J TABLE [01 contains the address of the routine P,

and successive locations contain the addresses of the

routines Q through S.

ABSOLUTE ADDRESSES

As discussed in Chapter II, the choice of address

assignment for a variable is normally left to the compiler.

However, one may choose the location of a variable in the

following manner:

A = I#3ac5,

As a result of this assignment, the address of variable A

becomes #3ac5. Obviously, A may be treated as a table con-

sisting of consecutive locations #3ac5, #3ac6, etc. The

nmmber assigned as the address must be either a decimal or

hexadecimal Integer.

The mode of a variable defined in this manner Is deter-

mined by placing either a coma or a period after the right

brace, a coma assigning a fixed point mode to the variable

and a period assigning a floating point mode to the variable.

The variable A may be defined In the floating point mode

as follows:

A =#3ac5I.
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NILIAC STATERT NOTE1S

a [21 * A, The contents of memory location 2 is
stored Into the variable A.

, (I] * A, The contents of the memory location
whose address is in I is stored into
the variable A.

3 [B + 10] -' A, The contents of the memory location
whose address is 10 greater than the
address that Is in B is stored into the
variable A.

A )[#7b5], The value contained by the variable A
Is stored into memory location #7b5.

,[B]+[2] 1 [B+10]. The contents of the memory location
whose address is in B plus the contents
of memory location 2 Is stored into the
cell whose address is 10 greater than
the address that is in B.

This form of absolute addressing is merely a degenera-

tive form of subscripting following logically from the

general form OPERAND [SUBSCRIPT ± number] where OPERAND is

suppressed,

It must be remembered that absolute addresses are

denoted by braces in the dimensioning statement and by

brackets in the program logic.
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XI11. LIBRARY OF IT S

In scientific computation, any but the simplest

problem usually require the ready availability of mathe-

matical functions such as the trigonometric, inverse

trigonometric, logaritbmic, exponential, etc, functions.

NULIAC-N provides these functions through its Library of

Functions which, in April 1963, contains the following 14

functions:

AROCOS

ARCTAN
Cos
FL TO 1•
FX TO L1.
ZXP

LI
LOG
SIN
SPLIT
SQRT
TAN
C•mE• N

The function library, whenever one or more functions

are called in a program, will automtically be compiled as a

separate flowchart labelled LIBRARY PACKAGE at the end of

compilation just as the 10 PACKAGE has been compiled. If

both packages are needed in a program, the two additional

flowcharts, LIBRARY PACKAGE and 10 PACKAGE, will be compiled

in that order at the end of compilation.
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The LiBRARY PACKAGE ill contain only those functions

which are called in the program (and any additional functions

which may be called by these functions) and not the entire

function library (unless all of the library functions are

called on). Hence, the length of the LWBRARY PACKAGE in

any program will be the sane length as if only the functions

needed had been read in directly from tape.

The library function names are not forbidden names.

These names may be defined and used in any program. Any

library function name which is defined in a program will be

used as that definition. However, if a library function

name is used but not defined prior to end of compilation,

this function will be compiled from the library at the end

of compilation. The usual concept of temporary or local

names is applicable here; namely, if a library function name

is defined locally within a flowchart, that definition will

be used within that flowchart but calls for that name out-

side that flowchart will be filled from the function library.

All functions (except FX TO FL and FL TO FX) are

floating point functions. The entry in all cases is

,FUNCTION (A;B), except for SPLIT which is ,SPLIT (A;BC),.

NR#29,p.109
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All argunents are floating point except the input argument

to 11 TO 1L and the output argument to 1L TO 1. FIX TO YL

converts a fixed point argpment to its corresponding float-

ing point value while FL TO FX converts a floating point

argument to its corresponding rounded fixed point value.

SPLIT converts a floating point argument Into its Integral

and fractional parts (the output arguments appearing in

that order). CUM1IN is a function used by SIN3, COB, and

TAN for their actual computations although it may be used

directly by the programmer. The input parameters of the

trigonometric functions and the output parameters of the

inverse trigonometric functions are in radians, and the

latter are the principal values of the particular functions.

The uses of all other functions should be evident from

their names.

Other functions will be added to the NNLIAC-N library

as the demand for them arises.

As an example (such more complicated than the usual

case) of the use of the library, suppose that it is re-

quired to calculate the value Y where

=- ,sin2 (e2z - cos x) + In (z 2 + 3) + 16.74

NR#29,p.1 10
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Dimensioning TB and TS 1 as temporary floating point work-

Ing locations., a solution using the Library of Functions, is

,2.0 * X -, TB, EXP (TS; TS),

Cos (X; TS I), TS- TS I -. TS,

SIN (TB; TS), TS * TS -* TS,

Z * Z + 3.0 - TS 1, IN (TS 1; TS 1),

TB + TS 1 -) TS, SQET (TS; TS),

TB + 16.74 Y.,

The general exponential X = AB, where A and B are any

calculable expressions, can be solved since AB e

and, therefore,

,LN (A; TS), B * N A -Av TB, EXP (TS; X),

would yield the NELIAC-N solution.

LIBRARY PACKAGE

Although library function names are not forbidden names,

it is good practice to avoid using them except as library

calls since their use for other purposes may complicate

understanding of the program and may interfere with its

Integration with other flowcharts or programs. The usage of

these names is further complicated by the fact that some

library functions themselves call other library functions.

NB#29,9p.111
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Hence, when the programmer uses 3 ~iuorirv functi~n mnmp. rLr

some athpr nurrose, trioublfj n.-v rt'-iuit ý.vtrn tflfugt he.i~

not cill that varticular -ibr3-r' rtwstctivr; -tr.ce sý-'e ibrary

fun~ction he does cal1l dzi : ! ~uwth~cze,%re. triv~i~~ of

tnc- function library B.;F..Arot 1ev&F .i;uL(4 not 6b2 14fined

globally. At the cresent t-,e. thee iilhr;rv niv~e -',ith the

other library functions they c3ill xndicate beneath themi are:

L BRARY PACKACIf,
ARCCJS

ARMCAN
SQPT

ARCSIN
ARCTAN

ARCTAN
Cos

CONS hN
SPLIT

FL TO Fv,
F X To Fi.ý

5F-L IT'

I.JG
[ýN

CO.'. N
SPLIT

SPLIT
3Q14
TAX

cas
5 IN

C -YON N
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Note that several of the functions call on other

functions which in turn th inelves call on still other

functions thus further complicating the difficulties

which may arise from the Indiscriminate use of library

names.

NR#29,p.113
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x jIV. 4ACHIr. I-AWGUAGE C,.MNG

The N*W;IAC compile-r provide.- for the insertion ol

actual machine 1s.nauage instructions between conventional

Ni,.IAC strtements by mearn, ' 1 machine language coding aleo

known as "crutch coding" . 1.v-1 Snstruction consistS oY An

address -- either an unsigned decimel or hexaaeciwal

integer or A name (which r.iy be subscripted including the

absolute address notation, but which say not be bit-

handled), followed by 'ho hexi sign and a two digit hr-•x2

decimrii order (.ctu Lw, -...y unsigned one or two digit

hex-,decimal number'. F;•ch such ipstruction vw considerea

? statement and mv-t be ser!ted by cmmas (or their

efquivi Jent).

IKN It"UuCT ION _______

S,,•. f~a•.•O, .oad accumulator with contents of
location i Uta.

.0 #54, Add contents of location 0.

i + /4>000;- ,torp result in •aaress U;-000 plus
contetits of index register (1).

(
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Names of locations containing variables may be

referenced as well as actual addresses.

IISTBtKT IOM NOTES

,NIUBER #50, Load accuoulator with contents of
location referenced by the name

,ALPHA #54, Add contents of location referenced
by ALAR.

,EULT [I] #42, Store acc~uulator in location
referenced by RESULT augmented by
index register 1(I).

Constants may appear as address portions of many

instructions. If a constant Is to be treated as a hexa-

decimal integer, a hexi sign must precede the nvuber.

Any statement say be labeled by the familiar method of

punctuation, unique name, colon. This causes the next

instruction to be compiled into a left (upper) half-word

positn with an appropriate right (lower) half-word pass

instruction being compiled into the preceding program step

if necessary. Note in the example, the conditional jump in

the statement to the instruction tagged as ROIUrINE.

,ALPHA [ INDL#300J#50, [K+7#55s,
ASK #26, 0#40,

(OATION -2] #42, RoUrIn #12,
ROM In [] #11,

ROUTINE: LOCATION 93, #1000#20,

NR#29, p. 115
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There is a one-to-one correspondence between NELIAC

machine-language instructions and the actual machine-lang-

uage instructions in the resulting object program (allow-

ing for "passed' caused by verbal definitions) except in

the case of any instruction whose address portion contains

subscripting by name.

In the pure NELIAC language, the programer need not

concern himself with the contents of the computer registers

since he has no direct access to them. The compiler itself

keeps track of the registers it uses thereby preventing

difficulties from arising in the compiled object program due

to erroneous use of the registers. However, in machine

language coding, the programmer now has direct access to the

NAREC registers; and, therefore, he must be careful to keep

track of their contents himself. In order to be able to

successfully keep track of the A and U registers of the

NAREC during machine language coding, he must realize which

NELIAC-N statements may destroy the register contents and

avoid using any of these MELIAC statements at a time when he

is interested in the contents of a NAREC register. These

NELIAC-N statements include:

NWR#9,p.116
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(1) subroutine and function calls;

(2) subscripting by name (destroys U register only);

(3) the entry or recycle test In loop control

(destroys A register only);

(4) comparison statements (but not the alternatives

themselves);

(5) output statements;

(6) partial word or bit handling (whether explicitly

in the program logic or through dimensioned

partial words);

(7) NELIAC arithmetic statements.

Examples of Illegal machine language coding are:

(COMMENT: ILLEGAL USE OF REGISTERS
IN NACH IE LANGUAGE CODING.)
NOUN #50, SUBROTINE, HOLD #42,
NE [4]#24, 0- 0LIDr M2,wo •7] #43,

STORE I-
NO #50, I-O00)6 -630o, 0#90
COPIT #50, A = B: C#42; D#42; E-PF,
AB #24, 1< C >1, DI #43,
PW (5.o10) #24, 0#90,
A #50, B - C * D, E #422,

NN#29,p.117



I RIzFzIRIcIz #n,, p.118

The programemr wnt be particularly careful to precede

the order by a hezi sign in all cases. #3000#10, not

#300010, compiles as an unconditional transfer to the

left instruction of location #3000. #300010, will give

a compiler fault.

N209,0p.118
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XV. PARAUJEL NANES

NELIAC-N provides for the parallel definition of all

forms of names which may be defined either In the dimen-

sioning statement or in the program logic. This means that

whenever a name is defined, any number of additional names

may be defined to have the same meaning; all of the names

being completely interchangeable in their use. In all

cases, except in the definition of partial words which in-

herently contains its own means of parallel definitions,

names are defined in parallel to the initial name by simply

inserting immediately after it a colon and the second name.

This process of "colon name" may be repeated indefinitely,

thereby defining any number of names in parallel. What-

ever would have followed the single name now follows the

last 'lolon name" in the parallel definition. Examples in

the dimensioning statement

A : B :C,
D : E : F :G.
Al : A2 = 57.185,
B1 : B2 : B3 (20).

NR#29,p.119
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Examples of parallel definitions in the program logic

are:

,CALCULATIO: REENTRY: A + B C,...

,SUBR : SUBRI : JO-* D E E- F

Since any number and arrangement of partial words may

be defined in parallel, the definition of identical partial

words In parallel is merely the special case where both bit

designations of two or more partial words are identical;

e.g.,

,A : B IC (5-7), D(5-*7), E(6-*18)1,

In this case, the names C and D are interchangeable through-

out the program.

In any parallel definition, any name or names may be

temporized independently of the other names in the parallel

definition.

N"i29, p.1 20
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XVI. DIAGNOSTICS AND DUMPS

An effective aid for program checkout is provided by

the NELIAC-N diagnostics and dumps. As an illustration,

the following (nonsense) NELIAC program was compiled. The

RUN INFORMATION which is automatically furnished at the

end of compilation, the alphabetically sorted NAME LIST

DUMP, and the OBJECT PROGRAM DUMP, either or both of the

latter being optional with the compilation, were printed

out. The result is also shown below.

NR#29,p.121
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5
NELIAC PROGOMt,,,..
5
X(50) =* .5E0, -29.7*0, 48.927*1, 2.0*-d,
NUMBER OF £NTRIEb -4, T = O*Oj aj, B, C,
TAB: -*.X( ->7), YY(20-"46)1 (C00), ZZ;
STAP.T: A + B C, 0 ") T - N,
FOPI 0(t) NUMBER OF ENTlRIE - pI] * X(I] + T T1
98.7 < T 4 X [2):

STOP.
N+) -) N;

XX * Z& (5",10) - YY,
S..

N1EL LACPROGRAP

NR ROUTINL NAME FIRST !.AST
0) START V700 ft8b7

NEL IACPROGRAM

NAME LIST DUM1

A 27•,f
B 275b
C 2751
D! VI DE 2 30

F! Di V 2821.

F)MUL 280E7
F',SUB 27fe

2 70;"

K '2703
L Ž70)4
M 2705
MULTIPtLY o898
N 2706
NUMBEROFENTRIES 274d
START 27b?
STOP 27di
SUDSCRP 27.0
T 274e
TAB 2752
X 271b
xx 2752 01-007T, 2752 20*46
zz 27b6
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NELIACPROGRAM

OBJECT PROGRAM DUMP

2700 27b7 10 2701 10

27`b 0839 00 0000 00
2Tc f~a' 26 6666 66
271d o09f 4a 28f5 c2
2710 07ec cc cccc cd

274d 0000 00 0000 04

27bZ 2750 50 274f 54
27b8 275, 42 27dc 50
27T9 274e 42 2706 112
27ba 27dc 50 27bc 10
27bb 2701 50 27df 54
27bc 2701 42 274d 50
27bd 27df 55 2701 55
27be 27bf 12 27c6 10
27bf 27bf 11 27e0 10
27C0 2701 00 271b 00
27cl 0000 50 27e0 10
27c2 2701 00 27lb 00
27c3 0000 24 2806 0
27c4 274e 24 27f6 10
27c5 274e 42 27bb 10
27c6 27da 50 274e 24
27cZ 27c7 11 27fe 10
27c8 27cd 12 274e 50
27c9 2707 42 271d 50
27ca 2707 24 27fe 10
27cb 27cc 12 27cd 10
27cc 27cc 11 27d8 10
27cd 27df 50 2706 54
27ce 2706 42 27cf 10
27cf 27b6 50 0005 39
27d0 27de 26 0000 40
27d! 2708 42 2752 50
27d2 0001 39 27dd 26
27d3 2708 50 2898 10
27d4 27d9 26 0014 34
27d5 2709 43 2752 50
27d6 27db 26 0000 40
27d7 2709 54 2752 42
27d8 2700 82 27d9 10

NR#29, p.123
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27d9 0000 07 ffff ff
27da 087c 56 6666 66
27db 8000 00 Offf ff

27dd 0000 00 0000 7f
27de 0000 00 0000 3f
27df 0000 00 0000 0i
27e0 0000 34 27eb 42
2'7e, 0000 44 27e4 20
27e2 27e5 20 27e9 20
27e3 27e9 22 27ea 20
27e4 0000 50 27e7 '0
27e5 0000 24 0015 314
27e6 0000 40 00•d 3,
27e7 0000 54 0000 4!
27e8 0020 34 0000 40
27e9 0000 20 27eb 50
27ea 0000 10 0000 00

27ec 27e0 82 27ed i0

27f5 Offf ff ffff ff
27f6 27ef 42 27f0 43
27f7 0000 44 2888,21
27t8 27t8 11 2842 10
27f9 271' 50 27f2 24
27ta 27fc 18 27dc 50
27fb 2713 42 27fd 10
27fc 27df 50 27f3 42
27f2d7d 1 2859 1.0
27te 27et 42 2710 43
27ff 0000 44 2888 21
2800 2800 !, 2842 '.0
280w 271? 50 27f2 24
2802 2804 -,8 27d2 50
2803 2713 42 2805 -10
2804 27dc 50 27f3 4'2

5805 280 ' -859 ;o
2806 27e 42 2-7•0 43
280 0000 44 2888
2808 2808 -"i284- 10
2809 27e1 50 0008 30
280a 27et 42 2710 50
280b 000; 30 -7ef 6'
280c 2715 26 27ef 43
ebOd 27et 50 2Td 24
280e 28 8 2 o

NR#29, p.' 24
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280f 2ef50 288c55
2810 2 11 12 2813 10
2811 27ef 50 0001 31
2812 27sf 42 2815 10
2813 27ed 50 274f 55
2814 27ed 42 2615 10
2815 24;e 50 27ed 54
2816 26e 55 27ed 42
2817 288d 55 2818 10
2818 2819 12 281a 10
2819 2819 11 2889 i0
281a 27ed 50 27dc 55
281b 281d 12 27dc 50
281c 27ef 42 2688 10
28)d 27ed 50 0024 38
281e 27e1 54 27ef 4
281f 2821 50 2M2 .12
2820 271 18 223 10
2821 27dc 50 27sf 55
2822 27ef 42 2623 10
2823 2623 11 2888 10
2824 27ef 42 2 f0 43
2825 0000 44 288 21
2826 2826 11 2842 10
2827 27f0 50 0008 30
2828 27f0 42 27sf 50
2829 0001 30 27fo 70
282a 27f5 26 27f 43
282b 2;ef 50 2;86b 55
282c 262d 12 2831 10
282d 27ef 50 0002 31
282e 27ef 42 27d4 50
282f 24ed 54 2ed .42
2830 2 33 10 2831 10
2831 27ef 50 0001 31
2832 27ef 42 2833 10
2833 27ed 50 288e 54
2834 2;e4 55 243d 42
2835 24d 55 286 10
2836 2837 12 2838 10
2837 2837 11 2889 10
2835 27.d 50 27dc 55
2839 2.b 12 2d8 150
283a 273 41 2 588 10
283b 27ed 50 0024 38
283c 27ef 54 27ef 42
283d 271f 50 2712 24
283e 283f 18 2841 10
283f 27dc 50 27sf 55K .W* 9p.125
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2840 27ef 42 4, (1
2841 28It*, _h 0
2842 0000 414 21
2843 27ef ý-0 ..7ldc 5
28J44 -;'8)18c ýo'
28/45 L'Il. .-. 'dc -,0
2846 et ý ',!. f 1.
28147 b L9 0 -•M4,', 02848 U.-•. ,U , f'• '
28/L19 U...) '-.0 '"•.dc •5

284b .dc 5028/4c "*o5 '

284d ! 0 Žb-', 0
284e -,c '0 if•t
284f '. 50 O0:"i 39
2850 t 0000 40
S28453 f O 20 e 0
2892? +. 39

2855 ,.4,, ,*0 •'7e 4

.2856 'it 50 6-dP± 26
( 2857 Of,000 40 '7fO 0V-

2858 . OOO 10
2859 ,d 50 >7ee e .

285a t..r. L -ldc 55
285b .'.,c 6 z0 ,0
285c Atl -0 00.:0 38
285d e '-.0 ;'`050
285e ,p)0 3ý ,;7fO 4
285f : •0 •-BO '0
2860 ee 50 z:7ed
2861 .ac '-0 L- 7f1 •
2862 O0 0 3' ?8611 0
2863 -:'et 50 4.6'. b 0
2864 (000 3{ :'Tel !L
2865 _13 ;0 *.7dc ", .
2866 l:' ' 0 s0
2867 " :f 14J; '7ef 4?',-
2868 .,8 4369 10
2869 : 870 )0
286a 77ef ''0 000-' 3:,
286b 27ef 4' 7,df 50
286c ?_ed 'ý> •"Yed 14h
286d .:' ',: 560e '0
286. 26f - .870 ) 0
286f 2 86( f ' 2'89 0O

-- NRg29, p., __ __ _ __ _ __ _
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2870 2882 10 2871 10I871 zef 50 27f0 55
872 2;873 ,Ž 2 Ž77 10

1873 27ef 50 27f0 55
l~f 4- L7dc 2_4

8187,5 A876 8 `88 1o
.: 876 -87a 10 2877 10
2877 '7f0 50 27e 55
1378 1.7Pf 4" 7df 50
2879 :7f, 4Ž2
,87a :-7ef co 190 55
28b -871f i,7ed 50
287c * 7df Y9 27ed -

8d 7ef 50 0001 i)
Ž8_e ?(Jf 4_.- ?87a. 0
287f '",d 90 ýý-Fdc 55
P880 -82 .? :;7dc .,O
288, 7ef 4.; ý 888 io

277ed 50 00?4 38
'H'3 _ef -.4 ">ef 4'2

-8V 30f - ý0 .?dc 2 4
&3b 1c A.3:8 10

2-886 Ž7dc 50 •7ef 55C -887 l7ef 4,, M,98 10
2888 1 7ef 10 0000 10
Ž889 fff1 If ffff ff
28 8 a _-7ed 8& L88b 10
288b 000 00 0000 00
28 8 c 00g0 o0 0000 O0
288d 0000 00 0001 00
288e 0000 00 0000 80
;'88f O00f ff ffff ff
:890 0008 00 0000 00
-89, 0000 00 0000 ff
089-. 1000 00 0000 00

1393 Offf ff ffff ff

i_98 1394 Ir 895 43
ý"--•99 0000 44 Ž89f 21
'89• e6894 50 1895 60

c89b 89e • 0000 40
'?89C 2893 26 0000 40
L-9d 2892 54 289f 71
"189e 0000 o0 2893 26
;89f 0000 40 0000 10

NP291, 'p, 25b(



28&0 28M4 42 2805 43
28W1 002o 44 28b6 20
28.2 2: 53 2%6 13
28s3 2U452 28S5 L7
28&4 28a513 0000
28A5 28b6 10 2864 50
28.6 2895 24 28&8 16
28s 2893 50 288 11
28.a 2893 51 2867 42
28.9 2894 52 2894 42
282 2895 42

28b 0000 M0 2896 42
28&b (• •2%6 42

28ac 2W86 22 2865 50
28ad 0001 30 2865
28ae 2894 50 2895 55
280t 284c 12 28al 50
28W 2896 55 28b2 20
28bi 2894 50 2865 70
28b2 0000 31 286 26

2%b3 2897 50 2%b5 13
28b14 2897 43 2W6528b5 2 o o 10 00o
28W6 0000 10 dMd 82
28b7 2892 82 2%8 10

tMV2, p.1 25o
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The object program dump illustrated is a non-reloadable

dump for information only. NELIAC-N furnishes two reload-

able dumps - a bioctal dump and a standard NAREC dump.

Inasmuch as the bioctal dump is approximately 40 percent as

long as the NAREC dump, is comparison-loaded for correctness

as soon as it is punched :out, and, on readin, automatically

sets its own first and last addresses and check sums itself,

it is the preferred reloadable dump. In addition NELIAC-N

provides for the non-reloadable dumping, in the hexadecimal

format of the object program dump, of any sections of memory

specified by the programmer.

In the illustration just furnished, there were no

compiler-detected faults, In the event there are any com-

piler faults, these will be printed out as detected during

compilation. The next example gives the printout of the

compilation of a program containing a number of errors.

NR#29,p., 26
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NEL IACPROGRAM 101

I SQUARDI-I C, IC ARE:>>,< BL>,> 11-0~(1)91 A I-*UFE 3,B(I].PBUFF.

02 DIMENSIONING ERROR ) TS
O)a-.. 6,,,57,..118,,16,A4,.7,C(1o)TS(2);NELIAC CLASS PROGRAM:SUK 100 INTEG)

02 SUBSCRIPT FAULT 1.INTEGERSQUARED ID SUM,K-1 (1 )1001 INTEGER SQUARED (&-1 )+INTEGER SQUARED SUN.)INTEGER SQUARE]

02 CO/OPERAND/N0 FAULT I QUARED +D SUM,K-10()1001 INTEGER SQUARED[L.1 )+INTEGER SQUARED SUK..INTEGER SQUARE]

02 FUNCT ION FAULT .SUBSCRIP(
OF TADLE:L-=9(..1)oISQUARE FUNCTION(A[L]:TS),SQUARE FUNCTION(D(L];TS(1]),

02 CO/OPERAND/NO FAULT TS TS
E:L-9(-1 )OISQUAUE FIJNCTION(A(L]ATS),SQUAUE FUNCTION(B[L];TS[1j),TS+TS(1)

02 CO/OPERAND/No FAULT)
E:L-9(-l)OISQUARE FUNCTION(A[L]:TS),SQUARE FUNCTION(B[L];TS(1J),TS+TS(1]

02 FUNCTION FAULT + 1 A 3TS),SQUARtE FUNCTION(B[L];TS(1 ]),TS+TS(1 ]-'C[L]IEXIT.SQUARE FUNCTIONCINTEG
02 UNCLOSED SUB~ROUTINE 0 100 A9.
INTEGER*INTEGER4.INTEGER SQ EIXT:.. ; ..YZT)UI.9DA(PI,#.[t*Z<3D4

NR ROUTINE NAME FIRST LAST

01 ZOSTATEMENT 2700 2~e
02 NELIACCLASSPLJGR 27ob 2ba
03 IOPACKAGE 28cc 2c09

UNDEFINED NAME LIST DUMP

BUPER6 2cla
EXIT 2cjb
0 2clc
BUFFER3BUFFEJI3 2c1 d
LOO 2cle

NR#29,p.127
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Following the Program Name, there occur, in order,

three different types of diagnostics. First occurs the

faults in the order of detection with detailed information

about each fault detected being printed out in a two-line

entry. The first line gives, in order, the flowchart

number, the type of fault, the current operator, the

operand, and the next operator, all at the time of detec-

tion of the fault. The second line gives the 72 successive

characters in the symbol string in memory, centered on the

point where the compiler is compiling at the detection of

the fault. This enables the programmer to quickly locate

the pertinent point in his program and tells him exactly

what is actually in the computer memory at this point.

Next occurs the Run Information which gives the same infor-

mation as for an error-free compilation. Finally, there

may be an Undefined Name List. This Dump lists all names

which remain undefined at the ind of compilation and the

locations which the compiler has assigned them at the end

of the program.

The NELIAC-N compiler has a provision for loading a

single flowchart without its compilation.

NR#29, p.128



NAREC REFERENCE #29,,p.129

The NELIAC-N compiler also contains a SYMBOL STRING

DUMP which will print out the actual symbol string formed

in the NAREC memory from any flowchart. This is frequently

of use in isolating the cause of an apparent contradiction

between a flowchart and the compilation resulting from it.

This symbol string dump may be used in dumping the NELIAC

program during its regular compilation or it may be used

with the single flowchart load without compilation provision.

NB#29 po.129
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APPENDIX A

Summary of the NELIAC operator symbols

A. Punctuation

Comma: In general, a comma is used to

separate names and numbers in the dimen-

sioning statement and to separate state-

ments that are to be performed consecu-

tively in the program logic. In a one

name statement, a commE indicates a rc.

turn jump to a subroutine. The comma is

also used to sepprate the parameters is

v function crll.

Colon: the colon has five basic meanings.

In the dimensioning statement A. is useo

when defining a u)rtLi1l word, I.Vih the

name of that entire word preceding the

colon and a left brace following the name.

Using the colon after a name preceded by

punctuation defines that which follows as

the subroutine or the routine associated

with that name, except for parallel names.

NR#29, p.130
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Using a colon with any comparison symbol

separates the statement of the comparison

from the true alternative. The colon is

also used in the definition of a function

and is also used to define parallel names

in both the dimensioning statement and

the program iogic,

Semicolon: ihe semicolon is used to separ-

ate the dimensioning statement from the

flowch&srt logic. The semicolon can also be

used to end the true or false alternative

of a comparison. In a function call, a

semicolon separates the input parameters

from the output parameters.

Period: A period is used at the end of a

sequence, when control is transferred to

another part of the program as specified

by the word immediately preceding the

period. This same symbol is used as a

decimal point in numbers and to define

floating-point working locations.

NR#29,p.131
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Double period: A double period indicates

the end of the flowchart logic, and, con-

sequently, the end of the flowchart.

B. Arithmetic Operators

+ Plus sign

- Minus sign

* Multiplication sign

/ Division sign

SExponent sign or Up arrow: Indicates an

exponential operation. The number to the

right of the symbol expresses the power

to which the base is to be raised. At

present only the base 2 (arithmetic shift)

or no base (logical shift) may be used.

C. Comparison Symbols

Equal: Also used in the dimensioning

statement and in loop control.

> Greater than

( Less than or eaual to

Greater than or eaual to

NR#29,p.'132
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D. Miscellaneous

( ) Parentheses: In the dimensioning state-

ment, parentheses indicate the number of

variables in a table. In both dimension-

ing statement and program logic, paren-

theses enclose bit specifications for

operating with partial location operands.

In the definition or call of a function,

parentheses enclose the parameters to be

used. Parentheses also enclosL comments

when used with the colon. They also

enclose loop increments and decrements and

furnish algebraic grouping in the program

logic.

[ ] Brackets: Brackets are used for sub-

scripting. The numeral or index enclosed

by brackets augments the name preceding.

If no name precedes the brackets, the three

quantities together are treated as an

operand.

NR#29,p.133
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U• Braces: In the dimensioning statement,

braces enclose the name whose address is

to be the initial value of the name pre-

ceding the braces, or enclose the number

which is to be the absolute address of the

name preceding the braces. They also

enclose definitions of part location

variables. In the program logic, braces

indicate loops, and enclose subroutines,

functions, and output statements.

Right Arrow: Indicates that the result of

the preceding operation is to be stored

into the name following the arrow. Also

used to help specify bit operands.

Absolute Sign: Used to purge names, used

in output statements to indicate one saace,

and used to indicate absolute values in

the program logic.

Boolean OR Sign: Used to separate parts

of a compound decision. Used in output

statements to indicate five spaces.
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n Boolean AND Sign: Used to separate parts

of a compound decision. Used in output

statements to indicate no space.

<> Less Than, Greater Than Signs: Used in

output statements for printout of

variables.

<< >> Double Less Than, Greater Than Signs: Used

in output statements for printout of

literals. Also used in the dimensioning

statement for literal definitions.

NR#29, p.135
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5

(COMMENTS: THIS FLOWCHART DATED 4 MARCH 1963

IS A DIMENSIONING STATEMENT ILLUSTRATING

THE VARIOUS FORMS OF NOUNS IN NELIAC-N.)

A, B(6), C(#20), D = 5, E = -5, F = #300, G = -#f3c,

H(3) 1, 2, 3, P(#20) = 7, 6, 5, 4,

Q(27) = , , 6, -8, #17, , 57, -#6,

R: S: T, U: V: W: X = -58, Y: Z: AA (50) = 16, -#27, , -8, #10,

AB: JAC (0-*23), AD (24-147)1 (26) = #1234 56 789a bc, , 5,

JAE (0-0), AF (0>7), AG (8-23), AH (0-.23), AI (24-.31), AJ (32-.47),

AK (24-47), AL (24-47), AN (20-47), AN (6-*6), AP (15-.35)f,

AQ: AR: AS: JAT (5-10), AU (5-10), AV (7.14)1,

AW = 1#20001, ADDR A = JAI, ADDR SWITCH = 1A, B, C, D, E, Fl,

TIEMP, TIEMP 1: AX: JAY (5)10), TIEMP 2 (23-1,23)1 (#10) - 57, -18,

FA. FB (6). FC (#20). FD = 5*0, FE - -5*0, FF - 278.,

FG = -768.00*0, FH (3) = 1.0, 2.0, 3.0,

FP (#20) = -12*0, -12.0, -12., -1.2*1, -12000* -3, -12.0*0, -1.2*1,

FQ (27) = , , 6*0, -8.*0, 25.0, 5700*-2, , , -6.,

FR: FS: FT. FU: FV: FW: FX = -58.0,

FY: FZ: FAA (50) = 16.0, -39*0, , -8., 16.0,

FAW = 1#30001. ADDR FA = JFAI,

FADDR SWITCH = fFA, FB, FC, FD, FE, FFf,

FITEMP, FITEMP 1: FAX (#10) = 57.0, -18.0;

NO LOGIC:
NR#29,p.136
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5

(COMMENTS: THIS FLOWCHART DATED 4 MARCH 1963

IS A DIMENSIONING STATEMENT ILLUSTRATING

THE VARIOUS FORMS OF NOUNS IN NELIAC-N.)

A, B(6), C(#20), D = 5, E = -5, F = #300, G = -#f3c,

H(3) = 1, 2, 3, P(#20) = 7, 6, 5, 4,

Q(27) = , , 6, -8, #17, , 57, -#6,

R: S: T, U: V: W: X = -58, Y: Z: AA (50) = 16, -427, , -8, #10,

AB: JAC (0-*23), AD (24--47)1 (26) = #1234 56 789a bc, , 5,

JAE (0-,0), AF (0"*7), AG (8-23), AH (0-23), AI (24-.31), AJ (32-.47),

AK (24-.47), AL (24-)47), AM (24-.47), AN (6.)6), AP (15-.35)1,

AQ: AR: AS: IAT (5-.0), AU (5-.10), AV (7-14)1,

AW = I#20001, ADDR A = JAI, ADDR SWITCH = JA, B, C, D, E, FI,

TIEMP, TIEMP 1: AX: JAY (5-.10), TIEMP 2 (23-.23)1 (#10) - 57, -18,

FA. FB (6). FC (#20). FD = 5*0, FE = -5*0, FF = 278.,

FG = -768.00*0, FH (3) = 1 .0, 2.0, 3.0,

FP (#20) = -12*0, -12.0, -12., -1.2*1, -12000* -3, -12.0*0, -1.2*1,

FQ (27) = , , 6*0, -8.*0, 25.0, 5700*-2, , , -6.,

FR: FS: FT. FU: FV: FW: FX =-58.0,

FY: FZ: FAA (50) = 16.0, -39*0, , -8., 16.0,

FAW = 1#30001. ADDR FA = JFAI,

FADDR SWITCH = JFA, FB, FC, FD, FE, FF1,

FITEMP, FITEMP 1: FAX (#10) = 57.0, -18.0;

NO LOGIC:
NR#29,p.136
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APPENDIX C

NELIAC-N Forbidden Names

NELIAC-N places the following restrictions on the pro-

grammer's otherwise unlimited choice of names which he may

define and use:

(1) The 5 ALGOL words

GO TO

DO

IF

IF NOT,

FOR

must never be used as names or parts of names. However, if

any of the spacing requirements are violated, the same

sequence of NELIAC characters is no longer considered as ap

ALGOL word and may be freely used.

(2) Each name must be uniquely determined within its first

16 characters (excluding spacing and ALGOL words).

(3) The single letters I, J, K, L, M, and N must never be

defined globally.

NR 29,p.137
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(4) The following names are defined globally in the various

packages automatically compiled into programs by the com-

piler as needed by the programs. In many programs, some or

all of them must not be used, but, in any event, good pro-

gramming practice dictates that they never be used (except

for the library function names and these only for bona fide

library function calls):

SUBSCRI P
MULTI PLY
DI VI DE
FI ADD
FI SUB
F) MUL
F1 DI V
10 PACKAGE
PRI NTOUT
TOP OF FORM
DOWNL1 NE
END OF FILE
LIBRARY PACKAGE
ARCCOS
ARCSIN
ARCTAN
COS
FL TO FX
FX TO FL
EXP
LN
LOG
S IN
SPLIT
SQRT
TAN
COUS 1 N

NR#29,p, 38
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APPENDIX E

NELIAC-N OPERATOR INSTRUCTION SHEET (4/4/63) Date

RCC Problem Number NRL Account Number

Problem Title Programmer

Sweep Telephone

Console Input System Unless Otherwise Specified. If stored object program may covi

Console Input System (3800-3bbb), specify Direct Operation.

Printer only (except reloadable dumps) unless otherwise specified.

1. Compile

Flowchart Tapes:

(1) F- (3) F- (5) F-

(2) F- (4) F- (6) F-

One Tape: LO cOO.

More than one tape: LO cOl, LO c0 4, LO c03.

Stop on bad compilation unless otherwise specified. CIRCLE DUMPS DESIRED.

2. Name List Dump LO c05.

3. OP Dump LO c09.

4. Dump Locations (if desired):

LO cOa (if needed).

Box and Transfer.

5. Bioctal Dump and Comparison Load

Punch, LO c06, Printer, Load Tape, LO c07.

6. NAREC Dump

Both, LO cO8, Printer.

7. Other Information:

Run Information Extra Copy LO cOd

Printer Code LO cOb. Punch Code LO cOc.

8. Special Instructions:
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